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1. Introduction

In this paper we investigate the theory of p-adic families of automorphic forms for the
group GSp,/Q whose component at infinity has singular Harish-Chandra parameter and
is a non-degenerate limit of discrete series. The automorphic forms we consider can be
realized in the coherent cohomology of an appropriate automorphic vector bundle over a
Siegel threefold ([28]). The Siegel threefolds are finite unions of arithmetic quotients of the
three dimensional Siegel upper half space. They have a modular interpretation as moduli
spaces of abelian surfaces with polarization and level structure and they have canonical
models over number fields. Using this coherent realization one can prove that the Hecke
parameters of these automorphic forms are defined over number fields and construct, using
congruences, compatible systems of 4-dimensional Galois representations ([76], [63]).

For the group GLa(R) there is (up to twist by a character) one non-degenerate limit
of discrete series. Automorphic forms with this component at infinity realize in the weight
1 coherent cohomology of the modular curves and correspond to weight 1 modular forms
in the classical terminology. We recall certain special features of weight 1 modular forms
compared to modular forms of weight k£ > 2 : they do not occur in the étale cohomology
of a local system of the modular curve; there is no dimension formula for the space of
weight 1 modular forms; they occur in degree 0 and degree 1 coherent cohomology of the
same weight 1 automorphic locally free sheaf; the Galois representations attached to an
eigenform has finite image (and has irregular Hodge-Tate weights (0,0))...

For the group GSp,(R) there are lots of non degenerate limits of discrete series (even
modulo twist by a character). Their Harish-Chandra parameters lie on certain walls
of the character space of a maximal torus of the derived group Sp,, and these walls
are 1-dimensional ! If 7 is an automorphic form on GSp, with component at infinity
one of these non degenerate limits of discrete series, the associated compatible system
of Galois representations has (conjectural) Hodge-Tate weights of the form (k + 1,k +
1,0,0) or (k4 1,0,0,—k — 1) for k € Z>o, up to twist. In this paper we will only
consider Harish-Chandra parameters which yield Hodge-Tate weights of the form (k +
1,k+1,0,0). The corresponding automorphic forms realize in the degree 0 and the degree
1 coherent cohomology of a vector bundle that we denote by Q®*:2) (and is attached to the
representation Sym”*St ® det?St of the group GLy which is the Levi of the Siegel parabolic
of Spy).

We construct p-adic families of (cuspidal) cohomology classes for the sheaves
{Q(k’Q)}kZO in degree 0 and 1. To state precisely the theorems, we need some more
terminology. We denote by Xx — Spec Z, a toroidal compactification of the Siegel
threefold of level given by an compact open subgroup K = [[, K, C GSpy(Af) such
that K, = GSpy,(Z,). Attached to the Klingen parahoric subgroup Kli(p) C K,, we
get a covering Xgi;(p)k — Xk which parametrizes a subgroup of order p of the semi-
abelian scheme (at least when the semi-abelian scheme is abelian). We denote by D
the relative Cartier divisor of the boundary in Xg or Xgy(p)x (no confusion should
arise). In the paper we define an Hecke operator U at p associated to the double coset
Kli(p)diag(p?, p, p, 1) Kli(p) which acts on the cohomology of Xf;(p)x. There is also a
corresponding Hecke operator 1" at p associated to the double coset Kpdiag(pQ, p,p, 1)K,
which acts on the cohomology of Xx. Let A = Z[[Z;]] be the one-dimensional Iwasawa
algebra. For each integer k, there is a map k : A — Z, extending the character z — 2k of
Zy.

Our main theorem is :

Theorem 1.1. — There is a perfect complex M of A-modules of amplitude [0,1] such
that:
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1. For all k € Z>o we have a canonical quasi-isomorphism :
M @F;, Qp = RT(Xkui(p) &, Q%) (= D) @z, @)V,
where the exponent U — ord means the ordinary part for the action of U.

2. For allk € Z, k > p+ 1, we have a canonical isomorphism :
HO(M ®/l(,k QP/ZP) - HO(XKa QU@?)(_D) ® QP/ZP)T_Ord7
where the exponent T — ord means the ordinary part for the action of T'.

3. The perfect complex M carries an action of the Hecke algebra of level prime-to-p,
and the isomorphisms above are equivariant for this action.

Remark 1.1. — There is a natural compatibility between the first and second point
of the theorem : for any k € Z, k > p + 1, the natural map (a p-stabilization map)
HY(X g, Q%2 (—D)2Q,) T~ — HO(Xf;(p) i, Q52 (= D) @Q,)Y " is an isomorphism.

Remark 1.2. — We also develop a theory of finite slope families in the third part of this
work.

Remark 1.3. — In [33], Hida initiated the study of ordinary Betti cohomology on locally
symmetric spaces associated to GL,, over arbitrary number fields F. Whenn > 3 (orn > 2
and F' is not totally real), the non-Eisenstein cohomology is concentrated in more than one
degree. To some extent, what we present here is the beginning of a coherent analogue of
this theory. The analogy is that in both situations the interesting cohomology is naturally
supported in several consecutive degrees. See the introduction of [11].

Let N be the product of primes ¢ such that K; # GSpy(Z¢). The perfect complex M
carries an action of the prime-to-pN Hecke algebra. For a maximal ideal m of this Hecke
algebra, we can consider the direct factor M, of M obtained by localization at m. We
say that m is a non-Eisenstein maximal ideal if it has an associated 4-dimensional repre-
sentation of the group Gal(Q/Q) (unramified away from pN and satisfying the familiar
local-global compatibility conditions at the primes not dividing pN), and this representa-
tion is absolutely irreducible. Our second theorem is :

Theorem 1.2. — Let m be a non-Eisenstein mazimal ideal of the prime-to-pN Hecke
algebra. The complexr My, has trivial Euler characteristic.

Remark 1.4. — We in fact believe that if m is associated to a Galois representation
which is absolutely irreducible and stays absolutely irreducible after restriction to Galois
groups of real quadratic fields, then the cohomology groups H'(My,) are torsion A-modules.

The perfect complex M is obtained as the U-ordinary part of the cohomology of
a huge sheaf of A-modules § ® Q2 (—D). This sheaf is defined on the open formal
subscheme .’{%Z(p) x of the p-adic formal scheme Xy ;(p)x attached to Xgy;(p)x where
the p-rank of the semi-abelian scheme is at least 1 (and the universal rank p group scheme
is multiplicative). This formal scheme contains strictly the ordinary locus which is the
locus where the p-rank is 2. Its image in the minimal compactification is covered by two
affines, and this explains why the complex M is supported in two degrees. The sheaf
§%(—D) “interpolates” the sheaves {Q*0)(—D)}rez., in the sense that for all k € Zxo,
we have a canonical map : -

QD) = F(=D) @1 Z,p.

The interpolation property rests on the special shape of the universal p-divisible
group over %%Z (p)k which contains at least a one-dimensional multiplicative p-divisible



4 Higher coherent cohomology and p-adic modular forms of singular weights

group. More precisely, we can define a pro-étale tower : %?(%Z(poo) K — %%}Z(p) x which
parametrizes the one-dimensional multiplicative p-divisible groups H, inside the universal
p-divisible group. The fibers of this last map are isomorphic to 1+ pZ, C P! (Zy) over the
ordinary locus, while the map is an isomorphism over the rank one locus. Denote by wg_
the dual of the Lie algebra of Hy, this is a line bundle. Over the space %IZ& (p>) g we
have a canonical surjective map Q*9) — w®k which is an analogue of the projection to
the highest weight vectors in representation theory The sheaf §" is obtained by p-adically
interpolating the powers of wp_ . This can be done because the G,,-torsor wy_ possesses
a Z, -reduction, given by the Hodge-Tate period map :

HT : T,(HD) = wy._.

Before taking the ordinary part, the cohomology is enormous. The U-ordinary part
cuts the perfect complex inside this enormous cohomology. There is a heuristic explanation
for this. We explain it at a spherical level, using the T-operator instead (for technical
reasons we sometimes prefer to work at spherical level). Over the complement of %12(1 (the
supersingular locus), one can prove that the T-operator acts topologically nilpotently on
the sheaf Q%2 when k is large enough. This comes form the following observation. Let
A: A — A’ be an isogeny of “type” T between two abelian surfaces defined over a discrete
valuation ring Ok. If A and A’ have supersingular reduction, one shows that the isogeny
on the reduction factors through the Frobenius map of A. As a result, the differential of
the isogeny dA : war — w4 has to vanish modulo the maximal my of Og. This property
is special to the supersingular locus.

Making this heuristic argument work requires some efforts. One of the difficulties is
to make sense of the Hecke operators U and T on the integral cohomology. We first need
to define the correspondence underlying the U and T operator integrally. The formulation
of the moduli problem is difficult because it involves the p? torsion of the universal abelian
variety (the cocharacter of the torus of GSp, underlying the double coset is not minuscule).
Our approach is to use the factorization diag(p?, p, p, 1) = diag(p, p, p, 1).diag(p, 1,1, 1) and
factor accordingly the correspondence into two correspondences U; and Us and T} and T5.
The moduli problems underlying U; and Us or T7 and T5 can be defined integrally, and the
moduli spaces can even be described locally using the local model theory. There is another
difficulty. The correspondences are not finite flat over the Siegel threefold. Defining the
necessary trace maps in cohomology requires some results from Grothendieck-Serre duality
in coherent cohomology. There is also a subtle normalization issue. But luckily, all this
can be resolved.

Having defined the Hecke operator T', we are able to prove an integral control theorem
for k>0 :

HO(M ®f . Zy) = H' (X, Q2 (—D)) T

and to show that M is a perfect complex.

It seems very hard to obtain an integral control theorem for all £ > 0. We will
nevertheless be able to obtain a control theorem after inverting p by an indirect method.
Over Qp, we can construct an overconvergent version M T of M, obtained by taking the
ordinary part for U of some overconvergent cohomology of the analytic fiber X’ I%lll(p) K

of %%}Z(p) x with value in a huge Banach sheaf. We observe that U is compact on this
cohomology and we actually develop a theory of finite slope families.
By construction, there is a map MT — M ®£p Qp which is easily seen to be injective

on H° and surjective on H'. This is a “degeneration” of the classical statement that all
ordinary p-adic modular forms are overconvergent.
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With finite slope overconvergent cohomology classes, we can adapt the argument of
analytic continuation and gluing of [38] and prove that small slope cohomology classes are
classical. In the ordinary case, we obtain that for all £k > 0 :

M @k, @y = RD(Xxu(p)ic, 252 (~ D) @E, @)V "

Combining everything, we deduces that the map M — M ®£p Qp is a quasi-
isomorphism at weights & > 0 and then at all weight k& > 0 by some elementary dimension
argument.

The cohomology M ®/L\’k Z, is thus an “integral” structure of the cohomology

RI(Xki(p)k, Q%2 (=D) ®£p Qp)Y=ord. A very important feature is that M ®%, Z, is
concentrated in degree 0 and 1.

In [34] and [3] a theory of p-adic modular forms in coherent cohomology is developed
for all weights. This means that we consider all possible automorphic vector bundles
Qkr)(—D) for (k,r) € Z>p x Z coming from the representations Sym*St @ det”St of the
group GLs. In this theory, only the degree 0 cohomology is interpolated. Let As be the two
dimensional Iwasawa algebra. For each pair (k,r) € Z>¢ x Z we can define a specialization
morphism (k,7) : A — Z,. The main theorem of [34] for the group GSp, (using also the
results of [62]), states that there exists a finite free Ag-module M’ such that :

1. for all (k,r) € Zxo x Z we have M’ @y, 1) Zp = HO(XZ5:(p) i, QF7) (= D))ord’,

2. for all (k,r) € Z>o X Z>4, HO(%f{?i(p)K, QW) (—D))ord is a subspace of the space
of classical modular forms of Iwahori level at p.

In this theorem, 361252 (p)k is the ordinary locus in %}2(}1 (p)k and ord means
the ordinary part for the usual ordinary idempotent attached to the diagonal matrix
diag(p®, p?,p,1) € GSp,(Q,). The control theorem holds for weights (k,r) with r > 4.
One can sometimes (after making some localization) improve the control theorem to r > 3
which is exactly the condition under which the corresponding automorphic forms are
discrete series at infinity.

When we specialize M’ at singular weights we cannot expect to have a good classicity
theorem : we can attach p-adic Galois representations to eigenforms in M’ ® Aa,(k,2) Zp but
these Galois representations may not be de Rham at p. It should be true that classical
eigenforms in M’ ® Aa,(k,2) Lp are exactly those with de Rham associated Galois represen-
tation but unfortunately we do not know how to establish this directly.

On the other hand, eigenforms in H°(M ®k,k Zy) correspond to classical automorphic
forms and one often knows that their associated Galois representation is de Rham ([54],
prop. 4.16). There is a natural injective map H°(M ®k,k Zp) — M' @, (k,2) Zp- It should
actually be true that the subspace of M’ ® As,(k,2) Zp spanned by eigenforms with de Rham
associated Galois representations is “generated” by the image of HY(M ®k,k Ly).

It is conjectured that for every simple abelian surface A over Q, there should ex-
ist a cuspidal automorphic form 7 on GSp,/Q such that the spin L-function of 7w and
the L-function of H!(A) coincide. When End(A) # Z this is known ([85], [42]). See
[8] for a precise conjecture in the case End(A) = Z. These automorphic forms are of
the type we have considered so far as their component at infinity should be a limit of
discrete series and they should realize in the cuspidal coherent cohomology of the sheaf
Q002 In [61] we were able to prove a modular lifting theorem saying, under many tech-
nical assumptions, that an abelian surface whose associated p-adic Galois representation
is residually modular arises from a p-adic modular form. In that paper, our Taylor-Wiles
system was constructed by letting Galois deformation rings act on the module of ordinary
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p-adic modular forms H° (.’flzﬁl (p)x, 202 (=D))ord . Congruences are unobstructed for or-

dinary p-adic modular forms, while they are for classical modular forms in weight (0, 2)
because of the non vanishing of H'. The classical Taylor-Wiles method requires unob-
structed congruences. The draw back is that we do not know how to characterize classical
modular forms among ordinary p-adic modular forms in weight (0,2). In [11] and [12],
Calegari-Geraghty explained how to modify the Taylor-Wiles method in order to apply it
in obstructed situations. They could prove a better (but conditional) modular lifting the-
orem saying, under technical conditions, that an abelian surface whose associated p-adic
Galois representation is residually modular arises from a weight (0, 2) modular form by let-
ting the Galois deformation ring act on some localization of HO(Xf, Q0% (—-D)® Q,/Z,)
provided one could show that the localized cohomology vanishes in degree greater or equal
than 2. Unfortunately, nobody has been able to establish this vanishing for the moment.
As a replacement of H*(Xx, Q%2 (—D) ® Q,/Z,), we suggest to use H(M ®/L\72 Qp/Zy)
where M is the complex provided by theorem 1.1. The point is that p-divisible classes
in HO(M ®k72 Qp/Z,) do come from cohomology classes in HO(Xf;(p) i, 2%?) (—D)) and
thus from classical automorphic forms. This strategy will be employed in a future joint
work with G. Boxer, F. Calegari and T. Gee.

This paper is organized in four parts. The first part is preliminary. Readers are
suggested to skip it on first reading, and come back to it when necessary. We study the
existence of projectors on complexes of modules. This will be used to define ordinary
projector on cohomology. We present certain technical results on the cohomology of the
sheaf @+ on an adic space. These are only used in section 14. We also develop a formalism
of cohomological correspondences that is adapted to our situation. Finally we recall some
results concerning automorphic forms and Siegel threefolds over C.

The second part of the work is dedicated to the construction of the perfect complex M
in theorem 1.1. The definition of the complex itself is not so difficult, but establishing that
it is a perfect complex involves a delicate study of the correspondences in characteristic p.

The third part is dedicated to complete the proof of theorem 1.1 and establishing
the control theorem in weight k¥ > 0. The argument is indirect as we have to use over-
convergent cohomology. Most of this part is dedicated to develop a theory of finite slope
overconvergent cohomology. In some sense this is easier than the integral slope zero theory:
we can prove that U is compact and the finiteness of the finite slope cohomology follows
easily. There is nevertheless the delicate problem of proving that the cuspidal cohomology
is concentrated in degree 0 and 1. Finally we show that small slope cohomology classes
are classical. We use the method of [38], but need to rephrase it at the sheaf level (one
cannot glue higher cohomology classes).

In the fourth part we prove that the Euler characteristic of a non-Eisenstein localiza-
tion of our perfect complex is zero by using results of Arthur on the theory of automorphic
forms.

I thank G. Boxer for suggesting that there should exist a theory of p-adic modular
forms for singular weights. The author attended a workshop in McGill Bellairs Research
Institute in 2014 where F.Calegari and D. Geraghty explained their modified Taylor-Wiles
method (now available in [12]). This was a motivation for developing a theory of p-
adic modular forms on higher cohomology. We are pleased to thank the organizers and
speakers of this workshop. I thank N. Fakhruddin for inviting me to the Tata institute and
for helping me to define Hecke operators. In a forthcoming joint work, we will study the
problem of defining Hecke operators on the integral coherent cohomology of more general
PEL Shimura varieties. I thank G. Chenevier for his help with section 15.2.4. I thank G.
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Boxer, F. Calegari, T. Gee, B. Stroh, A. Weiss and L. Xiao for interesting discussions and
feedback. I thank J. Tilouine who introduced me to the modularity conjecture of abelian
surfaces. Finally, I express my gratitude to the referees for their very detailed and helpful
comments. This research is supported by the ANR-14-CE25-0002-01.

PART 1
PRELIMINARIES

2. Ordinary projectors on complexes

In this section, R is a complete local noetherian ring with maximal ideal mpr. We
assume moreover that R/mp is a finite field. We develop a theory of ordinary (or Hida)
projectors for certain complexes of R-modules.

2.1. Locally finite endomorphisms. — Let Mod(R) be the abelian category of R-
modules. Let Mod“™(R) be the category of mp-adically separated and complete R-
modules. This is a full subcategory of Mod(R). The category Mod“"?(R) is not abelian
in general. Nevertheless, there is a notion of exact sequence in Mod“"?(R) (a complex
of objects in Mod“"P(R) is exact if its image in Mod(R) is). Also, one sees easily that
any arrow M — N in Mod“™(R) has a kernel in Mod“"?(R) (its kernel in Mod(R),
which is an object of Mod“"?(R)) .

Definition 2.1.1. — Let M be an object of Mod®"P(R). Let T € Endgr(M). The
action of T on M is locally finite if for all n € N and all v € M/m}, the elements
{T*v}ken generate a finite R/m%, submodule of M /m',.

Thus, the action of T"on M is locally finite if for all n € N, M/m% can be written as
an inductive limit of finite and 7T-stable R-modules.

Lemma 2.1.1. — Let 0 — M; — My — M3 — 0 be an ezact sequence in Mod“™P(R).
Let T be a R-linear homomorphism acting equivariantly on M1, My and Ms.

1. If the action of T is locally finite on Ms and My, it is locally finite on Ms.
2. If the action of T is locally finite on Ma, it is locally finite on Ms.

3. If there exists n € N such that m'y. My = 0 and if T' is locally finite on Ma, then it
is locally finite on M.

Proof. Point 2 and 3 are obvious. We check point 1. For all n € N, we have an exact
sequence:

Let M be the image of M;/m’, in My/m},. The action of 7' on M is locally finite by 2.
Let v € Ms. Since T is locally finite on M3, there is N € N, w € M, ag, - ,an—-1 € R
such that TNv = w + Zfi_ol a;T"v. Since T is locally finite on M, there is N’ € N,
bo, -+ ,by—1 € R such that TN w = Z;V:lal bjTjw. The submodule of M;/m?, generated
by {T%v, T’w, 0 <i< N —1, 0 <j < N’ —1} is stable under the action of T. O
Remark 2.1.1. — The assumption that m’%.Ms = 0 in lemma 2.1.1, 3. is necessary: take
R =Zp My = Tlics., Zpy My = [Len, Z/p" * Z, My = [licp. Zy the kernel of the
natural map My — M3, and T the endomorphism of My which maps (a;)iez., € M2 to
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(0, pag, p®ay,- - ,p'ai_1,---). One checks that T is locally finite on My, that T(M;) C My,
and that T is not locally finite on Mj.

Lemma 2.1.2. — Let M be an object of Mod“™(R) and let T be an endomorphism of
M. The action of T on M is locally finite if and only if it is on M/mpg.

Proof. We prove it by induction on n. Consider the exact sequence :
my ! /mp @p M — M/mp — M/m! — 0

By assumption, the action is locally finite on M/m’ ' and on m’; ! /m% @g M. It is also
on m’}{_lM /m’, and finally on M /m} by the above lemma. O

Lemma 2.1.3. — Assume that T acts locally finitely on an object M of Mod“"P(R).
Then there is a unique ordinary projector e € Endg(M) such that :

1. For allv € M, ev = limn_oo TN'v where the limit is computed for the mp-adic
topology.

2. e and T commute, we have a T-stable decomposition M = eM @ (1 — e)M where
T is bijective on eM and topologically nilpotent on (1 —e)M.

Proof. We reduce to the situation where M is a finite R/m}-module for some n. Then
M is a finite set and we claim that the sequence {TV'v} is constant for N large enough.
Indeed, the decreasing sequence of modules TN'M is stationnary for N > Ny. On TNo' M,
T acts bijectively, hence has finite order. As a result the projector e is well defined and
all the properties are easily deduced. O

Lemma 2.1.4. — Let f: My — My be a morphism in Mod“™P(R). Let T be a R-linear
homomorphism acting equivariantly on My and Ms. Assume that the induced action of T
1s locally finite on My and My and denote by e the ordinary projector associated to T on
My and M>.

1. We have f(eMy) C eMy and f((1 —e)M;y) C (1 — e)Ms.
2. Assume that Ms = cokerf € Mod“™(R). Then coker(eM; — eMsy) = eMs3.

3. Let My = kerf. Assume that T is locally finite on My. Then ker(eM; — eMs) =
eMy.

Proof. Since f commutes with T, it also commutes with the projector e given by the
formula of lemma 2.1.3. We deduce point 1 which means that f decomposes as the direct
sum of the maps ef and (1 —e)f. Using point 1, we deduce easily point 2 and point 3. [J

2.2. Perfect complexes. — Let D(R) be the derived category of Mod(R). Let
CP(R) be the category of bounded complexes of mp-adically complete and separated
R-modules with morphisms the morphisms of complexes of degree 0. Let C/'**(R) be the
full subcategory of C®"P(R) whose objects are bounded complexes of mp-adically com-
plete and separated, flat R-modules. Let D"(R) and D/!%(R) be the full subcategories
of D(R) generated by the objects of C®™(R) and Cf!%(R). We denote by CPe"/(R)
the full subcategory of C/'(R) of complexes of finite free R-modules (also called perfect
complexes), and by KP°"/(R) the homotopy category. Its objects are the same as CPe"/ (R)
but morphisms are homotopy classes of morphisms in CP*"f(R). Let DP*"/(R) be the full
subcategory of D(R) generated by CP"f(R). The functor KP"f(R) — DPef(R) is an
equivalence of category ([83], coro. 10.4.7).
The following proposition gives a characterization of DP*"/(R) inside D! (R).



9 Higher coherent cohomology and p-adic modular forms of singular weights

Proposition 2.2.1. — Let M* be an object of C/'(R), concentrated in degree [a,b].
Assume that M® @ R/mp has finite cohomology groups. Then M® is quasi-isomorphic to
a perfect complex concentrated in degree [a,b].

Proof. It suffices to show that H*(M*) is a finite R-module. By [55], lem. 1, p. 44,
we would then deduce that M*® is quasi-isomorphic to a perfect complex concentrated in
degree [a, b].
We have short exact sequences of complexes
0 — mp/my "t @r M® — M®/mp — M®* /w7t =0

and by induction, we deduce easily that the cohomology groups H'(M*®/m%) are finite
R/m%-modules. As a result, the system {H'(M®/m%)} satisfies the Mittag-Leffler condi-
tion. By [EGA], III, chap. 0, prop. 13.2.3, we deduce that H'(M*®) = lim, H/(M*/m?%).
It follows that H'(M*®) is complete and separated. The map H'(M®) — lim, H'(M*®)/m%
is an isomorphism. Therefore, H (M*®) is a finite R-module if and only if H'(M®)/mp is a
finite R-module by topological Nakayama’s lemma. Recall ([83], thm. 5.6.4) that there is
a spectral sequence

L = Tor® (HU(M®), R/mp) = HPYI(M* @p R/mp)

with dy : EDY — EFT971 We prove by descending induction on i that H'(M?®) is a
finite R-module. Assume this holds for ¢ > n + 1 and let us prove it for ¢ = n. The map
H"(M?®)/mpr — H"(M*®/mpg) has a kernel which admits a surjective map from subquotients
of the modules Tor, 1 (H"""(M?®), R/mp) for » > 1. There are only finitely many values
of r for which these modules are non-zero and all are finite dimensional by the induction
hypothesis. It follows that the kernel is finite dimensional and thus H"(M*®)/mpg is also
finite dimensional and H"(M*®) is a finite R-module by Nakayama’s lemma. O

The following is a version of Nakayama’s lemma for complexes.

Proposition 2.2.2. — Let f : M* — N*® be a map in C/'*(R). We assume that f ®1 :
M® ®@r R/mp — N®* Qg R/mp is a quasi-isomorphism. Then f is a quasi-isomorphism.

Proof. Consider the cone C(f) of the map f. We need to prove that C(f) is acyclic. C(f)
is an object of Cf1%(R) and C(f) ®r R/mp is the cone of f ® 1 and is acyclic. It follows
from the previous proposition that C(f) is quasi-isomorphic to a perfect complex and
thus, the groups H'(C(f)) are finite R-modules. We now prove by descending induction
on i that H/(C(f)) = 0. Assume this holds for i > n + 1. Using the spectral sequence
ER? = Tor® (HY(M®), R/mp) = HPYY(M® ®p R/mp) we see that H"(C(f))/mp <
H"(C(f)/mg) = 0. By Nakayama’s lemma, we deduce that H"(C(f)) = 0. O

2.3. Projectors. — We now consider projectors on complexes.

Definition 2.3.1. — Let M* € C/l%(R). Let T € Endgsiar gy (M*®). We say that T' is
locally finite on M*® if T acts locally finitely on each M*.

By lemma 2.1.3, we can attach to T" a projector e € Endgar (g (M*®).

Definition 2.3.2. — Let M* € D/'"(R). Let T € Endpjiae(py(M*). We say that T is

locally finite if there exist M € C1%(R) a representative of M*® and T € Ende et gy (M)
a representative of T which is locally finite.

The following is a characterization of locally finite morphisms.
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Proposition 2.3.1. — Let M* ¢ D'%(R). Let T ¢ Endp et gy (M®). The following
are equivalent :

1. T is locally finite,

2. T is locally finite on the cohomology groups H'(M® ®% R/mp) and there exist
representatives M € CT9(R) of M® and Ty € Endgsia gy (Mg) of T

Proof. The implication 1. = 2. follows from lemma 2.1.1. We do the other implication.
Let M3 and Ty be representatives of M*® and 7. We claim that M has a subcomplex
N* € C/l®*(R) which has the properties:

1. all the differentials d : N* — N1 are 0 modulo mp,

2. the inclusion map ¢ : N* — M has a section s : M§ — N°®,

3. the maps ¢ and s are quasi-isomorphisms.

It follows that N*® and s o Tj o are representatives of M*® and T, and moreover so Ty o4
acts like T on HY(M® ®% R/mp) = N'/mp and is therefore locally finite.

It remains to prove the claim. Fix some index ¢. By lemma 2.3.1, we can find
decompositions M} = J' @ K' and M{*' = J1 @ K**! such that d : M§ — M ™
preserves these decompositions and induces isomorphisms J* — J1 and the zero map
K'/mp — K™ /mp. Tt is easy to check that we get a subcomplex S® of Mg by setting
S =Mjifj#i,i+1and $7 = K7 if j € {i,i + 1}. This subcomplex is a direct factor
of M and the differential d : S* — S*™! vanishes modulo mg. Repeating the process for
all indices will produce a complex N*® with the expected property. O

Lemma 2.3.1. — Let f : M — N be a map in Mod®"P(R). Assume that M and N
are flat. There is a decomposition M = My & My and N = N1 & Na such that f(M;) C N;
fori € {1,2}, fla, : M1 — Ny is an isomorphism and f|n, @ Mo — Na is zero modulo
meg.

Proof. Let M be a flat object of Mod“"(R). Let {€;}icsr be a basis of M/mp as an
R/mp-module. Let {e;}icr € M be alift of {€;};c;. Denote by R! the mg-adic completion
of R'. The map R! — M corresponding to {e;};c; induces an isomorphism R! — M by
Nakayama’s lemma and the flatness assumption on M. We refer below to {e;}icr as a
topological basis of M. Let f : M — N be a map as in the lemma. Let {e;}ies be a
topological basis of M and let {€;};er be its reduction modulo mpr. We can assume that
I = I'[[I"” and that {€};c;» is a basis of ker(M/mp — N/mpg). We may now take a
topological basis for N, denoted by {h;};ecs with the property that J = J'[[J", J' =T
and hj = f(e;) for j € J'. In these basis, f is represented by an upper triangular matrix :

Lpxpr C
0 B’

where 17,7 is the identity matrix of size I' x I', C' = (¢ ;) jyerxr € Mpxr(R) and
B € My ju(mpg). These matrices have the property that all their columns tend to 0 in R
(for the filter of the complements of the finite subsets). For each [ € I”, we can replace
er by e; — > ,cp cigei (one checks that the sum converges). In this new basis, f has the

correct shape :
lpxr 0
0 B

Let M* € D/'(R) and T € Endp sat(gy(M?®) be a locally finite endomorphism. For
each locally finite representative Mg € C/19(R) of M*®, and T, € Endeiar gy (M) of T,

O
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we get a projector eg € Endgiar (g (Mg ) and a direct factor eg M of M. We can consider
¢o the image of eg in Endpeoms(g)(M*®) and the associated direct factor egM® of M* in
D™P(R), which is represented with egM. We now discuss the independence on the lift
(M(; ) TO)'

Lemma 2.3.2. — Let (M$,Ty) and (M, T1) be two locally finite representatives of
(M®,T). We denote by ey and ey the projectors associated to Ty and Ty, and by €y and
e1 their images in Endpeoms gy (M*®). Assume that egM® is an object of Drerf(R). Then
the canonical map egM® — 1 M*® is a quasi-isomorphism.

Proof. On H'(M*®/mp) we have Ty = Ty and Ty and T} are locally finite by lemma 2.1.1.
Moreover, the projector ¢’ on H'(M®/mpg) associated to Ty = T acting on H!(M®/mpg)
is also equal to the projector induced by ey or €; by lemma 2.1.4. It follows that the
map egH!(M®/mp) — e H (M®/mg) is an isomorphism. By proposition 2.2.1, €1 M*® is a
perfect complex. It follows that the natural map egM® — €3 M*® can be represented by a
map in CP"/(R). By proposition 2.2.2, this map will be a quasi-isomorphism. O

In the sequel of the paper, and under the assumptions of lemma 2.3.2, we will some-
times speak of the projector associated to a locally finite endomorphism, but one should
keep in mind that this projector could depend on the choice of a particular representative,
although two representatives give canonically isomorphic direct factors.

Remark 2.3.1. — In [41], lem. 2.12, there is a definition of the ordinary projector
attached to an element 7' € Endpeoms(g)(M®) in the case where M*® is an object of
Drerf(R). In this setting, the condition of being locally finite is automatically satisfied.
Our definition in a more general setting is compatible with the definition of op. cit.. It is
proven in op. cit. that the projector is unique. This rests on the property that the algebra
Endpeoms(g)(M®) is finite over R when M* is a perfect complex.

3. Cohomological preliminaries

This section contains a number of technical results concerning the cohomology of adic
spaces. These results are only used in part III of this work.

3.1. Cohomology of ﬁ’;. — Let k£ be a complete non-archimedean field with ring of
integers O and maximal ideal mo,. In this section, we will only consider adic spaces
X over Spa(k, Q) which are of finite type (in particular quasi-compact), and separated.
The structural sheaf of X is denoted by &x. There are a subsheaves 6"; and 6‘}” of Oy
defined by

O0L(U)={feOxU), Vo €U |f|, <1} and 05T (U)={f € Ox(U), Vx € U |f|, < 1}

for all open subsets U of X. If U = Spa(A, A™) for a complete Tate algebra topologically of
finite type, and A denotes the subring of A of power bounded elements, and A% the ideal
of AY of topologically nilpotent elements, then &3 (U) = AT = A% and 051 (U) = A%
([35], lem. 4.4).

Proposition 3.1.1. — Let X be a separated adic space of finite type. The natural maps
H(x,0%) — H(X,0%)
and
H'(x,057) - H(X,0%T)

from Cech cohomology to cohomology are isomorphisms.
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Proof. There is an isomorphism in the category of locally ringed spaces (X, ﬁ;) =
limy (X, Ox) where X runs over all formal models of X' (see [69], thm. 2.22). By [19],
prop. 3.1.10, we deduce that H'(X, 67) = limy H (X, Ox). Since X is quasi-compact, one
can compute Cech cohomology using only finite coverings (see [26], p. 224). Tt follows that
H (X, ﬁ;g) = limy H (%, O%). Since X is separated, the formal models X are separated
([7], prop. 4.7) and H (X, 0x) = H (X, O%).

We prove the second isomorphism. Let X be a formal scheme which is topologically
of finite type over Spf Oy. Let X be its special fiber over Spec Ok/mo, and Xred the
reduced special fiber. There is a surjective map of coherent sheaves over X : Ox — Ogrea
and we denote by Jx its kernel. Under the isomorphism of locally ringed spaces (X', ﬁ;\t) =
limy (X, Ox) where X runs over all formal models of X', we have ﬁ;,(“r = colimyxJx. The
second isomorphism can be proved by repeating the proof of the first isomorphism. O

We now recall a result of Bartenwerfer.

Theorem 3.1.1 ([2]). — Let X be a smooth affinoid adic space of finite type. For all
i >0, H(X, 05) is annihilated by a non-zero element c(X) € Ok. If X admits a smooth
affine formal model, then H'(X, 05%) =0 for all i > 0.

Remark 3.1.1. — We do not known whether H/(X, 0%) = 0 for affinoids which admit
a smooth affine formal models. For some results in dimension 1, see [82] sect. 3.

Corollary 3.1.1. — Let X be an admissible smooth and separated formal scheme. Let X
be its generic fiber. Then the canonical map H (X, mo, Ox) — H' (X, ﬁj\ﬁ) is an isomor-
phism.

Proof. Take an affine covering Y of X. The cohomology of mo, O is computed by Cech
cohomology with respect to this covering : H(X, mo, Ox) = ﬂﬁ(%, mo, Ox). Let U be
the generic fiber of 4. Let U be an open in X with generic fiber V. Since X is smooth,
me, Ox(B) = 051 (V). We deduce that Hi (X, me, Ox) = Hi, (X, 0%T). By [26] corollaire
on page 213 and theorem 3.1.1, we have Hi, (X, 041) = H/(X, 05T). O

3.2. Cohomology of projective limits of sheaves. — We denote by p a topologically
nilpotent unit in k.

Lemma 3.2.1. — Let X be a smooth affinoid adic space. The map H(X,Ox) —
lim, H (X, Ox /p"O7) is an isomorphism.

Proof. First assume that i > 0. We need to prove that lim, H (X, Ox /p"07%) = 0. Using
the exact sequence 0 — pnﬁ; — Oy — ﬁx/p”ﬁ;g — 0 and theorem 3.1.1, we deduce
that H'(X, Ox /p"07) is annihilated by some constant ¢ € O \ {0} for all i,n > 0. It
follows that lim,, H' (X, Ox /p"0%) is annihilated by ¢. On the other hand, this group is p-
divisible. It follows that it vanishes. The cokernel of the map H(X, Ox)/p"H(X, 0F) —
HO(X, O /p"07) is killed by c. It follows that the map lim, HO(X, 0x)/p"H(X, 07%) —
lim,, HO(X, O~ /p”ﬁ}') is surjective : its cokernel is killed by ¢ and both sides are p-
divisible. On the other hand, HY(X, Oy) is a Banach space and, since X is reduced,
H°(Xx, 07) is bounded inside this Banach space. It follows that N,p"HO(X, 6%) = {0}.
O
Let .7 be a locally free sheaf of 0y-modules. We assume that there exists # T C .%
a locally free sheaf of ﬁ;—modules such that # = .#* Bgt Ox.
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Lemma 3.2.2. — Assume that X is a smooth and separated adic space. Let U be a finite
affinoid covering of X, such that F |y is trivial. There is a non-zero element ¢ € O,
depending on U such that :
— for alln € N, the map Hi (X, F [p"F+) — H(X, 7 [p"FT) from Cech cohomol-
ogy relative to U to cohomology has kernel and cokernel annihilated by c,
— the map Hi/(X, F+) — H(X,F) has kernel and cokernel killed by c,
— the map lim, H} (X, F /p"F ) — lim,, H(X, F /p"F ) has kernel killed by c and
1S surjective.

Proof. Considering the spectral sequence associated to the covering Huieu U; - X, we
deduce that the kernel and cokernel of the maps Hi, (X, % /p"F*+) — H{(X,F [p"F )
are subquotients of H¥(Uy,.Z /p".Z ) for k > 0 and U; some intersection of the affinoids
in 4. By theorem 3.1.1, both the kernel and cokernel are killed by some non-zero constant
¢ (which does not depend on n). The same applies to the map I:I};,(X, FH) - (X, 7).
It follows that the map lim, H} (X, .7 /p"F*) — lim, H(X, Z /p".F ) has kernel killed
by c. Let us prove that the cokernel is killed by ¢?. Since both modules are p-divisible,
this will show the surjectivity. Let (f,) € lim, H(X, % /p".ZT). Then for all n, there
exists g, in HZ,(X,?/p"ﬁﬂ such that the image of g, is ¢f,. One sees that (cgy) €
lim, H! (X, .F /p".F ) has image (2 f,). O

Proposition 3.2.1. — Let X be a smooth and separated adic space. The map
H(X,.Z) = limH(X,.Z /p"FT)
n
1s surjective. If X is proper, the map is an isomorphism.

Proof.' Let U be a finite afﬁnqid covering of X, such that .ZT|y is trivial. The map
lim, H} (X, 7 /p"F ) — lim, H'(X,.Z /p".# ) is surjective. To prove the surjectivity of
the map of the proposition, it suffices to show that the map H!(X,.7) = I[IL(X, F) —
lim,, H} (X, .F /p".Z ) is surjective. Since all groups are p-divisible it is enough to prove
that the cokernel is killed by some non-zero element ¢ € Og. This follows from the lemma
below where K*® is the Cech complex which computes Hj,(X,.#) and K, is the complex
that computes I:I}/,(X , F [p*FT). The fact that K*® is the limit of the K is a consequence
of lemma 3.2.1.

We now prove injectivity in case X is proper. The kernel of the map of the proposition
is

Np"Im(H' (X, FT) — H'(X,.F)).
Since H'(X,.%) is a finite dimensional k-vector space, we need to show that
Im(H(X, ZT) —» H (X, F))

is a lattice. This will follow if we can show that that H(X,.%#T) is the sum of a finite type
Op-module and a torsion group. This can be proved as follows. Take a normal proper
formal model X of X such that the sheaf .Z* comes from a locally free sheaf 7 on X. We
can obtain such a model as follows. By Raynaud’s theory, we can find a model X’ of X
which admits an affinoid covering ' whose generic fiber refines &4. We can replace X’ by
its normalisation X in X. This is still a formal model. The sheaf .#Z " comes from a locally
free sheaf F on X’. By [52], lemma 2.6, this model is automatically proper. Let 2 be an
affine covering of X and V be its generic fiber. We have a map from Cech cohomology to
cohomology Hi, (X, F+) — H(X, # 1) whose kernel and cokernel are killed by a non-zero
constant ¢ by lemma 3.2.2. The cohomology FI%,(X , 1) is identified with the cohomology
HY(X,F) and it is a finite Op-module since X is proper.

O
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Lemma 3.2.3. — Let (K2)aen be a projective system of complexes of Op-modules. Let
K* = lim, K. Assume that there is an element ¢ € Oy such that the cokernel of the
map K™ — K" is killed by c for all n and o. Then the cokernel of the map H'(K®) —
lim, HY(K?2) is killed by c.

Proof. For all ¢ we have exact sequences :

0— BYK?) — ZY(K2) — H(K2) =0
Clearly Z/(K*) = lim, Z1(K3) — K'. Let (z4) € lim, Hi(K2). Let z, € Z/(K3) bea
lift of 2. Let Ima(zqﬂ) be the image of zo+1 in Z*(K2). Then Imy(za+1) — 2o = d(wy) €
BY(K?). Let t, € K1 be a lift of cw,. The sequence czg, cz1 + d(tg), czo + d(to +t1), - - -

converges in Z'(K*) to a lift of c(z4).
O

3.3. Base change. — Let f : X — ) be a quasi-compact map of finite type adic spaces
over Spa(k,O). Let i : Z — Y be a map of adic spaces over Spa(k,O) inducing an
homeomorphism from Z to i(Z) and for all 2 € Z a bijective map (k(i(2)), k(i(2))") —
(k(2),k(2)"). We can form the following cartesian diagram :

X o x

n

Z_".y

Lemma 3.3.1. — For all n € N, the canonical map (')"103%/p" — ﬁ;;/p” is an
isomorphism.

Proof. The stalk of these sheaves at a point x € Xz is k(z)%/p" (compare with [69],
prop. 2.25). O

Proposition 3.3.1. — For all n € N, we have the base change formula :
iTREOYT Pt = RO p"

Proof. The sheaf ka*ﬁ;g+/p” is sheaf associated to the presheaf U +— HF(f~1(U), o3t /o).
Thus, i 'RF f, O+F /p™ is the sheaf associated to the presheaf V' colimy cyHF (f~H(U), o3t /p)
where U runs over the neighborhoods of V in Y. Using the lemma above, we de-

duce that RF fiﬁ’;;r /p" = RFfL! _lﬁ;+ /p" is the sheaf associated to the presheaf

V 5 colimy, cwH¥(W, 657 /p") where W runs along the neighborhoods of Xy in X.
Since the map f is quasi-compact, we deduce that for V' a quasi-compact open in Z,

the set of neighborhoods of &y of the form f~!(U) for U a neighborhood of V in Y is

cofinal in the set of all neighborhoods of Xy in X. O

3.4. Cohomology of torus embeddings. — Let T be a split torus over Spec Z. We
will denote by T the formal torus over Spf Z, obtained by taking the completion of T’
along its special fiber T x Spec [F,,. We denote by T%" — Spa(Q,,Z,) the analytification
of T' x Spec Q, ( in other words, T*" = Spa(Qp, Zp) Xspec @ T, see [35], prop. 3.8). We
denote by T™ C T the generic fiber of T (see [35], prop. 4.2). Let X, (T) denote the
group of cocharacters of T.. Let 3 be a rational polyhedral cone in X, (T"). Let T — Tx
be the associated toric embedding defined over Spec Z ([40]). We define obviously 7",
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ng and Ty. Let X’ be a refinement of . We can similarly define T'%", T. ”g and Tyy. We
say that X' is smooth if T%y is smooth.

Proposition 3.4.1. — With the notations as above, let f : TS — 13" be the natural
morphism. Assume that X' is smooth. Then we have a quasi-isomorphism :

O = RIOF.

Proof. We first observe that the result holds true after inverting p by classical results on
toroidal embeddings (see [40], coro. 1 on page 44) and the comparison theorem stated
[70} thm. 9.1. It follows easily that ﬁ:,tfz ~ 0. ,m and we are left to prove that

R’ f* an =0 for all i > 0. It suffices to show that R’ f, ﬁ:,t?i /p =0 for all i > 0 since this

will 1mply that multiplication by p is surjective on R’ f*ﬁ;f;ﬁ for all ¢ > 0 and we know
2/

that this sheaf is torsion.

Let x € T¢". Let 0 € X be the minimal cone such that z € T2". This means that
x belong to the closed stratum in 7%". Let orp C X.(T)r be the R-span of o. Define
X«(Ty) = X«(T) Nog. This is a saturated submodule of X, (T"). It follows that X,(7»)
is a free Z-module and a direct factor. We choose a direct factor X,(771). We have
Xo(T) = Xu(Th) ® Xu(T). Let T =Ty x Ty be the associated decomposition of 7T

Then we have T ~ T{" x T3"}. Moreover, since o spans X,(T3), we deduce that the
closed stratum of T3 for the action of 75" is reduced to a point which we call 0. Then
z = («/,0) € T{™ x Tg%. Moreover, f~1(Te") ~ T{" x T3%,, where ¥" is the polyhedral
decomposition (e NY¥)N X*(Tg) Let fo : Ty, — T35 be the natural projection deduced
from f. Let f}: 2/ x 15%, — x’ x T37 be the map obtained from f; by base change.

By proposition 3.3.1, we have

Rif*ﬁ}ﬂ/pkx/,o R'(f})+0 xxTan /Pl 0)-

First assume that x is a maximal point corresponding to a rank 1 valuation on k(x).
Set Up =12’/ x T g Fix an isomorphism T3 ~ G, for some integer s. Let p = (p,--- ,p) €
T5™(Qp). Then the {Un = p"Up}nen form a fundamental system of neighborhoods of z in
o' x Tg'y. Tt is enough to prove that H(f~1(U,), ﬁ;iw" ) =0 for alli > 0 and all n > 0.

Using the action of p we are reduced to the case of Uo There

H' (7 (U0), O fun ) = Hi(&! X Ty, 67F Ly ) = H (To,0, k(2) 060, 05, )

2,51 ! T”g

by corollary 3.1.1 applied over the non-archimedean field (k(z),k(z)"). By clas-
sical results on toroidal embeddings (see [40], coro. 1 on page 44) we find that
Hi(‘3272//,k(1‘)00®ﬁ§2 2”) = Hi(Tgyo,k(w)(’O@ﬁgw). But Hi(zg,g,k(l‘)m@ﬁgz’g) = 0 for
1> 0 since %9, is affine.

If x is not a maximal point, let  be the maximal generisation of x. Then

Rif*ﬁ:/—t;tl/p’m = Rif*ﬁ}g;/pb =0
by [82], prop. 1.4.10 and example 1.5.2. O

4. Correspondences and coherent cohomology

In this section we develop a formalism of cohomological correspondences in coherent
cohomology and prove a few results that will allow us to consider Hecke operators on the
coherent cohomology of Shimura varieties.
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4.1. Preliminaries on residue and duality. — We start by recalling some results of
the duality theory for coherent cohomology. Standard references are [32] and [15]. For
a scheme X we let Dycon(Ox) be the subcategory of the derived category D(0x) of Ox-

modules whose objects have quasi-coherent cohomology sheaves. We let D;c on(Ox) (resp.

D, .,,(Ox)) be the full subcategory of Dgcon(0x) whose objects have trivial cohomology
sheaves in sufficiently negative (resp. positive) degree. We let Dgcoh(ﬁ x) be the full

subcategory of Dgeon (O x) whose objects have trivial cohomology sheaves for all but finitely
many degrees. We remark that if X is locally noetherian D;Oh(ﬁx) is also the derived
category of the category of bounded below complexes of quasi-coherent sheaves on X ([32],
coro. 7.19). We let Dgcoh(ﬁX)de be the full subcategory of Dgcoh(ﬁx) whose objects are
quasi-isomorphic to bounded complexes of flat sheaves of &x-modules (see [32], def. 4.3

on p. 97). Let us fix for the rest of this section a noetherian affine scheme S.

4.1.1. Embeddable morphisms. — Let X, Y be two S-schemes and f : X — Y be a
morphism of S-schemes. The mophisme f is embeddable if there exists a smooth S-
scheme P and a finite map ¢ : X — P xXg Y such that f is the composition of ¢ and the
second projection (see [32], p. 189). A morphism f is projectively embeddable if it is
embeddable and P can be taken to be a projective space over S (see [32], p. 206).

4.1.2. The functor f'. — Let f : X — Y be a morphism of S-schemes. There is a functor
Rfi : Dgeon(Ox) — Dyeon(Oy). By [32], thm. 8.7, if f is embeddable, we can define a

functor f' : D;rcoh(ﬁ’y) — D;rcoh(ﬁx). If f is projectively embeddable, by [32] thm. 10.5,

there is a natural transformation (trace map) Rf,f' = Id of endofunctors of D;c on(OY).

Moreover, by [32], thm. 11. 1, this natural transformation induces a duality isomorphism:
Homp, _, (ox)(F, ['9) 5 Homp__, (o) RfF,9)

for # € D, (0x) and ¢ € D;rcoh(ﬁy).
The functor f' for embeddable morphisms enjoys many good properties. Let us record

one that will be crucially used.

Proposition 4.1.2.1 ([32], prop. 8.8). — If.7 € D;rcoh(ﬁ’y) and 9 € Dgcoh(ﬁy)f;pd ,

we have a functorial isomorphism f'.7% @ Lf*4 = f'(F @ 4).

4.1.3. Dualizing sheaf and cotangent complex. — A morphism f : X — S is called a local
complete intersection (abbreviated Ici) if locally on X we have a factorization f : X
Z — S where i is a regular immersion (see [EGA] IV, def. 16.9.2) and Z is a smooth
S-scheme. If f is lci, we can define the cotangent complex of f denoted by Lx/g (see [37],
prop. 3.2.9). This is a perfect complex concentrated in degree —1 and 0. Its determinant
in the sense of [43] is denoted by wx/g.

Proposition 4.1.3.1. — If h : X — S is an embeddable morphism and a local com-
plete intersection of pure relative dimension n, then f'Ox = wX/S[n] where wys 1is the
determinant of the cotangent complex Lx/g.

Proof. This follows from the very definition of f' given in thm 8.7 of [32]. O

Corollary 4.1.3.1. — Let h : X — S, g : Y — S be embeddable morphisms of S-
schemes which are lci of pure dimension n. Let f : X — Y be an embeddable morphism
of S-schemes. Then 'Oy = wx/s ® f*w;/ls 18 an invertible sheaf.
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Proof. We have h'0g = wx/s[n]. On the other hand,

Wos = fl(g'0s)
fH(wysln))
= f(Oy @wy/s[n])
F1(Oy) ® frwyysinl.
O

4.2. Fundamental class. — Let X, Y be two embeddable S-schemes and let f : X — Y
be an embeddable morphism. Under certain assumptions, we can construct a natural map
O: f*Oy — f'Oy

which we call the “fundamental class”. Our construction of the fundamental class is com-
pletely ad hoc and rather elementary. The interest of this fundamental class is that if f is
projectively embeddable, applying R f, and taking the trace we get a map :

Tr: Rf*f*ﬁy — Oy.

4.2.1. Construction 1. — Assume that X and Y are local complete intersections over S
of the same pure relative dimension. Assume that X is normal and that there is an open
V' € X which is smooth over S, whose complement is of codimension 2 in X and an open
U C Y which is smooth and such that f(V) C U. In this case, it is enough to specify the
fundamental class over V' because, by normality, it will extend to X. Then over V, we
define the fundamental class to be the determinant of the map df : f*Qllj/S — Q%//S.

4.2.2. Construction 2. — Here is another important example. Assume simply that f :
X — Y is a finite flat map. In this situation, f!ﬁy = Hom(f+Ox,Oy). We have a trace
morphism try : f,0x — Oy and the fundamental class is defined by ©(1) = try.

4.2.8. Comparison. — We check that the two constructions coincide in the situation
where X,Y are smooth over S and the map X — Y is finite flat. In this situation,
X — Y islei™ and it makes sense to compare our two constructions of the fundamental
class.

Lemma 4.2.3.1. — The cotangent complex L,y 1is represented by the complex
[Q%,/S ®eo, Ox LA Qﬁ(/s]. The determinant det(df) € wx/y = f'Oy is the trace
map try.

Proof. We can first assume that S, Y and X are affine because the question is local on
X. We have a closed embedding (in fact a regular immersion) i : X < X xgY of X into
the smooth Y-scheme X xgY. We have an exact sequence :

0—>Iy—>ﬁy><sy—>ﬁy—>0
which gives after tensoring with Ox above Oy
0—>Ix—>ﬁx><sy—>ﬁx—>0

where Zx is the ideal sheaf of the immersion 7. It follows that Zx /I)Q( =TIy /I%/ ®eo, Ox =
Q%//S oy Ox.

On the other hand, Z.*Qﬁ(xsy/y = Qﬁ( /s The cotangent complex is represented by
Ix/I% — i*Q}(xSY/Y] which is the same as [Q%,/S ®ey Ox — Qﬁ(/s].

1. Observe that X — X xg Y is a regular immersion of X in the smooth Y-scheme X xg Y.
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The morphism f, detLy,y = Hom(f.Ox, Oy) — Oy is the residue map which asso-
ciates tow € f*Qﬁf/S and to (t1,- - ,t,) local generators of the ideal Zx over Y the function

Res[w, t1, ..., t,]. It follows from [32], property (R6) on page 198 that the determinant of
[Q%,/S ®ey Ox — Qﬁ(/s} maps to the usual trace map.
]

4.2.4. Fundamental class and divisors. — Let Dx — X and Dy — Y be two effective,
reduced Cartier divisors relative to S. We assume that f : X — Y restricts to a map
flpx @ Dx — Dy. We moreover assume that the induced map Dx — f~1(Dy) is
an isomorphism of topological spaces. We assume that the fundamental class © of f is
defined, so that we are either in the situation of construction 1 or construction 2.

Lemma 4.2.4.1. — 1. In the setting of construction 1, assume moreover that over
the smooth locus X*™ of X, Dx N X*™ is a normal crossing divisor and that
over the smooth locus Y™ of Y, Dy NY*™ is a normal crossing divisor. Then
the fundamental class © : Ox — f!ﬁy restricts to a morphism : Ox(—Dx) —
f'Oy(—Dy).

2. In the setting of construction 2, the fundamental class © : Ox — f'Oy restricts
to a morphism : Ox(—Dx) — f' Oy(—Dy).

Proof. We first assume that X and Y are smooth, Dx and Dy are relative normal crossing
divisors. In that case, we have a well-defined differential map df : f*Q%//S(log Dy) —

Qﬁ(/s(log Dx). Taking the determinant yields detdf : f* det Q%//S(Dy) — det Q%{/S(DX)

or equivalently detdf : Ox(—Dx) — f !ﬁy(—Dy). We work in the setting of construction
1. Let V be an open subset of X. Let s € Ox(—Dx)(V) be a section. We deduce that
O(s) € f'Oy (V) actually belongs to f'@y(—Dy)(V NU) where U is a smooth open in X
whose complement is of codimension 2. But then f'@y(—Dy)(V) = f'0y(—Dy)(V NU)
and the lemma is proven. We now work in the setting of construction 2. The lemma is
then equivalent to the obvious assertion that the trace of a section which vanishes along
Dx will vanish along Dy (since Dy is reduced). O

4.2.5. Base change. — Assume that we are in the situation of construction 1 or 2. Let
O : f*Oy — f'Oy be the fundamental class. Consider a cartesian diagram :

XX

J/f’ lf

Y >y
Proposition 4.2.5.1. — Assume that i is an open immersion or that f is a finite flat
morphism. Then there is a natural isomorphism of sheaves j* f'Oy = (f') Oy ). More-
over, if we denote by © : Ox — f'Oy the fundamental class of f, then j*© : Ox/ —

(f")' Oy is the the fundamental class of f'.

Proof. If i is an open immersion, the formula j* '@y = (') Oy follows from [32], thm.
8.7, 5. If f is finite flat, the formula j*f'@y = (f')' Oy~ is obvious from the definitions:
one reduces to the case that Y = Spec A, X = Spec B, Y/ = Spec A’, X’ = Spec B'.
We may even assume that B is a free A-module after further localization on Y. Then the
claim reduces to the following isomorphism : A’ ® 4 Homa(B, A) = Homa/(B’, A’). The
compatibility of the fundamental class with base change is obvious from its definition (in

2. In this formula, j* is not taken in the derived sense
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construction 1 this follows from functorial properties of differentials, in construction 2 this

follows from functorial properties of the trace morphism). O

4.3. Cohomological correspondences. — Let X, Y be two S-schemes. We adopt

the following definition:

Definition 4.3.1. — 1. A correspondence C over X and Y is a diagram of S-
morphisms :

C
N
X Y

2. Let F be a coherent sheaf over X and ¥ a coherent sheaf over Y. A cohomological
correspondence from F to 9 is a map T : R(p1)«p5-F — 9.

Associated with T', we have a map on cohomology which is still denoted by T :
RI(X, ) % RI(C.p5F) = RI(Y, R(p1)ap5F) = RI(Y.9).

Remark 4.3.1. — In practice X, Y and C will have the same pure relative dimension
over S and the morphisms p; and po will be surjective and generically finite.

Remark 4.3.2. — If we assume that p; is projectively embeddable the map T can be
seen, by adjunction, as a map p5.# — p\¥.

4.8.1. Construction of cohomological correspondences. — We now explain how we can
construct cohomological correspondences in practice. Let C' be a correspondence over X
and Y as before, we assume that p; is projectively embeddable. Let .# and ¢ be locally
free sheaves of finite rank over X and Y respectively. We assume that we are given a
morphism p5.# — pi9. We also assume that we have a map pj0y — p| Oy (typically a
fundamental class). Tensoring by ¢ the map p; Oy — p!1 Oy and using prop. 4.1.2.1, we
obtain a morphism p{¥ — p}% and composing we obtain a cohomological correspondence
T:psF —piY.

Remark 4.3.3. — In certain cases, one wants to renormalize this morphism. Let O be
a discrete valuation ring with uniformizer . We assume that S = Spec O, that X, Y,
C are flat over S. We further assume that the map T : p5.% — p!lg factors through
T:ps.% — wkpllg — p!lg for some non-negative integer k. Then we can normalize the
map T into a map w *T : p5F — pllg . We will see many situations where this occurs in
the sequel.

5. Automorphic forms, Galois representations and Shimura varieties

This section collects a number of classical results concerning automorphic forms,
Galois representations and Shimura varieties for the group GSpy,.

5.1. The group GSp,. — Let V = Z* with canonical basis (e1,---,es). Let J =
_0 A 61 where A is the anti-diagonal matrix with coefficients equal to 1 on the anti-

diagonal. This is the matrix of a symplectic form <,> on V. We let GSp, — Spec Z be
the group scheme GSp(V, <,>). The similitude character is denoted by v : GSp, — G,
and its kernel is the derived subgroup Sp, of GSpy.
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5.1.1. The dual group of GSp,. — Let Tder = {diag(tl,t2,t2_1,t1_1>,t1,t2 € Gy, } be the
diagonal (maximal) torus of Sp, and Z = {diag(s,s,s,s),s € G,,} the center of GSp,.
Let T be the diagonal torus of GSp,. We have a surjective map (of fppf abelian sheaves)
T x Z — T with kernel the group . The character group X*(T) is identified with

{(a1,a2;¢),c=a; +az mod 2} C Z3,
where (a1, ag; c).diag(sty, sta, sty 1, sty ') = 59132, We pick the following basis of X*(T):
e1 = (1,0;1), ea = (0,1;1) and eg = (0,0;2).

Note that eg is the similitude character v.

We make the following choice of positive roots {e; —ea, —2e; +e3, —e; —ea+e3, —2ea+
es}. Set ay = e; — ey and ap = —2e3 + e3. The simple positive roots are A = {ay, as}.
The compact root is a;. We let p = (—1, —2;0) be half the sum of the positive roots. This
choice of positive roots is related to the Shimura datum (see remark 5.2.1.1).

The cocharacter group X, (T) is the dual of X*(T). We identify it with

1
{(by,b2;d) € 523, bi+deZ, bo+deZ}

via (b, be; d).t = diag(thr ¢, tb2+d p=botd 4=bi+d) The following basis of X,(T) is dual to
e1,es and eg :
1 11
fl = (15070)7 f2 = (07 ]-70)’ and f3 = (*57*57 5)
The coroot of a; is af = f1 — fo and the coroot of as is ay = fo. We let AV = {aY, a3 }.
We let (X*(T), A, X, (T),AY) be the based root datum of GSp, corresponding to our
choices of maximal torus T and positive roots.
By [65], lemma 2.3.1 there is an isomorphism of roots datum between

(X*(T),A, X, (T),AY) and (X,(T),AY, X*(T), A).

It is given by a map i : X*(T) — X, (T) whose matrix in the basis ey, €2, e3 and fi, fa, f3
is

[ G W G T
— o =
(NG EEpy—

This isomorphism induces an identification of the dual group G/SEL with GSp,(C).

5.1.2. Parabolic subgroups. — If W C V is a totally isotropic direct factor, we let Py
be the parabolic subgroup of GSp, which stabilizes Pyr. We denote by Uy its unipotent
radical and by My its Levi quotient. The group My, decomposes as the product My, x
My y, where My, is the linear group of automorphisms of W and My, is the group of
symplectic similitudes of W /W (with the convention that when W = W, this group is
Gm.)

When W = (ey), then Py is denoted by Pgky; and called the Klingen parabolic. Its
Levi quotient is Mgy ~ Mg X Miiun =~ G x GLg. If W = (e1,e3), then Py is
denoted by Pg; and called the Siegel parabolic. Its Levi quotient is Mg; ~ Mg;; X Mg; p, ~
GL2 X Gm

Remark 5.1.2.1. — Let gc, ps; and mg; be the Lie algebras of GSp,/c, Ps; and Mg;.
Our positive roots lie in mg; (the compact roots), and gc/ps; (the non-compact roots).
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5.1.3. Spherical Hecke algebra. — Let ¢ be a prime number. The group GSp,(Z,) C
GSp,4(Qy) is a maximal compact subgroup (3). We let H, be the spherical Hecke algebra

Cg(GSp4(@£)//GSP4(Z£)> Z).

This is a commutative algebra isomorphic to Z[Ty, T[()l, Teq1,T02], generated by the
characteristic functions of the double cosets :

Tg72 = GSpAZz)di&g(f, Z, 1, 1)GSp4(Zg), Tg71 = GSp4(Zg)diag(€2, f, f, 1)GSp4(Zg),
Tg’o = fGSp4(ZZ).
The Hecke polynomial is by definition Qu(X) = 1 — TyoX + €(Tp1 + (02 + 1)Tp0)X? —
€3T532Tg70X3 + €6T20X4.
Consider the twisted Satake isomorphism H,;® C — C[X,(T)]" where W is the Weyl
group of GSp, acting naturally on X, (T) (see [25], p. 193, see also remark 5.1.5.1). To any

homomorphism O, : Hy; — C we can associate (using the identification G'/SE; ~ GSp,(C)
and the twisted Satake isomorphism) a semi-simple conjugacy class cg, € GSp,(C). More-
over, Oy(Q¢(X)) = det(1 — Xco,) ([25], rem. 3 on page 196).

5.1.4. A parahoric Hecke algebras. — We denote by Kli(¢) C GSpy(Z¢) the Klingen
parahoric of elements which belong to Pgy;(F;) modulo £.

We denote by HJIQZM) the subalgebra of C?(GSp,(Qy)//Kli(f),Z) generated by the

double cosets :
UKli(e),Q = Klz(ﬂ)dlag(é, f, 1, ].)Kl’L(f), UKli(Z),l = Klz(f)d1ag(€2,€,€, 1)Klz(€)

Uki(e)0 = LK1i(£).
This is a polynomial algebra in these variables.

5.1.5. Some local representation theory. — We let £ be a prime and let 7y be an irreducible
complex smooth admissible representation of GSp,(Qy). Assume that 7, is spherical :
WESP“(ZZ) # 0 (and necessarily one-dimensional). We let 6, : H; — C be the corresponding
character. We denote by («, 3,7,0) the roots of the reciprocal of ©,(Q¢(X)), ordered in
such a way that ad = (B, so that diag(a, ,7,9) represents the semi-simple conjugacy
class COy,- The Weyl group W acts on the quadruple («, 3,7, d) and the Weyl group orbit
exhausts all diagonal representatives of the conjugacy class co,,- We call (the W-orbit of)
(av, B,7,0) the Hecke parameters of my.

Remark 5.1.5.1. — The conjugacy class ce,, is the one attached to m ® ]1/]7% by the
usual Satake isomorphism (as opposed to the twisted Satake map that we use).

GSp4(Ze)

Lemma 5.1.5.1. — The eigenvalues for Ty, Ty 1 and Ty 2 acting of m, are respec-
tively :

(73ad, (7N af+ay+ad+ 6 +70) —L3ad, a+ B+ + 0.
Proof. This is a straightforward computation. O

Let 7y be an irreducible complex smooth admissible representation of GSp,(Qy) which
is spherical. We say that 7y is generic if 7 is an irreducible (unramified) principal series
representation. Let (a, 3,7,d) be the Hecke parameters of m,. This is equivalent to ask
that for all £,¢" € {a, 3,7, 6}, we have £71¢ #£ ¢ ([24], prop. 3.2.3).

3. There are two conjugacy classes of maximal compact subgroups in GSp,(Q¢). The group GSp,(Z)
is a representative of the standard class and is hyperspecial. The other class is represented by the paramod-
ular group which is not hyperspecial.
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Proposition 5.1.5.1. — Let w; be a generic spherical representation with associ-

Kli(f)

ated Hecke parameters (o, 8,7,9). Then m, is 4 dimensional, and the eigenvalues of

Ukii(e),0, Ukiiey,1 and Ugcie) 2 acting on wgm(e) are the Weyl orbit of {73, (™ a3, a+B.

Proof. This is [24], coro. 3.2.2. O

Let m; be an irreducible complex smooth admissible representation of GSp,(Qy) and

assume that W;ﬂi(ﬁ) # 0. Then there is a quadruple («, 3,7,8) € C* satisfying a8 = v
such that ﬂ_;{li(é) # 0 contains an eigenvector for Ugyp),0, Ukiir)1 and Ugqie),2 with
eigenvalues £~3ad, {~'afB, a+ B. The W-orbit of (a, 8,7,8) € C* is still called the Hecke
parameters of my.
Proposition 5.1.5.2. — Let my be an irreducible complexr smooth admissible represen-
tation of GSpy(Qp) and assume that W?h(@ # 0 and has Hecke parameters (a, 3,7,0).
Assume that for all £,¢" € {a, B,7,0}, we have €~1¢" # 4. Then 7, is a generic spherical
representation with Hecke parameters (o, 3,7, 9).

Proof. This is again [24], prop. 3.2.3. O

Let 7y be a generic spherical representation with Hecke parameters (o, 3,7,0). Let

us denote by (ﬂfli(z))aﬁ the /~'af eigenspace in wfli(é) for Ukii(r),1- Let us denote by
TaB ﬂfli(z) — (ﬂfli(f))a s the projection orthogonal to the other eigenspaces.

Lemma 5.1.5.2. — Assume that the set {af, 30, ay,v0} has 4 distinct elements. The

map w010 oy KU o Ki(O)

B s an isomorphism.
Proof. It is enough to prove that the map is injective. This follows from corollary 3.2.2
of [24]. O

5.1.6. Discrete series. — Given A = (A, Ag;¢) € X*(T) + (—1,-2;0) € X*(T)c which
satisfies —A\1 > A2 > A1 and a Weyl chamber C positive for A we have a (limit of) discrete
series (A, C) (see [28], 3.3).

Let 3 be the center of the enveloping algebra U(g). By Harish-Chandra isomorphism
(recalled in [18], p. 229 for instance), 3 ~ C[X,(T)]" where W is the Weyl group. The
infinitesimal character of w(A, C) is the Weyl group orbit of A.

If Ay # 0 and Ay # —A1, A determines uniquely C' and (A, C) is a discrete series. It
is natural to normalize the central character ¢ by ¢ = —A1 — \o + 3.

If 0 > A2 > Ay and C' is the dominant chamber corresponding to our choice of positive
roots, then m(A, C) is called a holomorphic (limit of) discrete series.

5.1.7. Galois representations attached to automorphic forms. — The following theorem
is obtained in [77], [47], [84] and [80]. A different proof (for the general type, see below)
is given in [73], completed by [54] using a lift to GL4 and [13].

Theorem 5.1.7.1. — Let 1 = 7o ® 7y be a cuspidal automorphic form for the group
GSpy such that meo = w(A, C) is in the discrete series and A = (A1, A2; —A\1 — A2 +3). Let
N be the product of primes ¢ such that my is not spherical. We let HY = ®/&N7-[g be the

restricted tensor product of the spherical Hecke algebras Hy for all prime numbers £+ N.

Let ©, : HN — C be the homomorphism giving the action of HYN on ®g+N7r£GSp4(Z[).

1. The image of O, generates a number field E.
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2. For all finite places \ of E, there is a semi-simple, continuous Galois representa-
tion:
pr : Go = GSpy(E)),

which is unramified away from N and the prime p below \ and such that for all
{1 Np, we have

det(1 — Xpr a(Froby)) = Ox(Qu(X)).

3. The representation py y is de Rham at p with Hodge-Tate weights (0, —A2, —A1, —A\1—
A2).
4. If pt N, then py y is crystalline at p and det(1 — X ¢|Deprys(prr)) = Ox(Qp(X)).

5. pa = pl ®X;A1_)‘2wm>\ for some finite character wy x and the cyclotomic char-
acter Xp.

Remark 5.1.7.1. — We use geometric Frobenii, the Artin reciprocity law is normalized
by sending p to the geometric Frobenius at p, and the Hodge-Tate weight of the cyclotomic
character is —1. The Galois representation p,  is the Galois representation attached to the

L-algebraic automorphic form 7 ® |1/|7% as predicted in conjecture 3.2.2 of [10]. The twist
by |1/|7% corresponds to the twisted Satake isomorphism that we use. The Hodge-Tate
weights are given by the infinitesimal character of 7y ® |I/|_% which is (A1, Ag; —A1 — A2).
The Hodge cocharacter is given by t — diag(1,#~™,¢7*2,+~*1722) The central character

of T® |y|_% is |.| 7?2 ® w, for some finite character w,. The character w; , is the A-adic
character of the Galois group G associated to w, by class field theory.

According to Arthur’s classification [1], the representation 7 in the theorem can fall
into six categories. If 7 is not of general type 4 then pr is reducible. Indeed, it follows
from an examination of Arthur’s classification that the representation p, y can be either
the sum of Galois representations attached to algebraic automorphic forms on GL; (case
e) and f)), the sum of Galois representation attached to algebraic automorphic forms on
GL; and regular algebraic automorphic forms on GLy (case c¢) and d)), the sum of Galois
representations attached to regular algebraic automorphic forms on GL3 (case b)). On the
contrary, if 7 is of general type then it is expected that p,  is irreducible.

5.2. Complex Siegel threefolds. —

5.2.1. Siegel datum. — We let h : Resc/rGy — GSpy/r be the map given by h(a +ib) =
aly +bJ. We let K C GSpy(R) be the centralizer of the image of h. The quotient
H = GSp,(R)/ K is the Siegel space.

Remark 5.2.1.1. — We have a Hodge structure on gg induced by ad(h). We let gc =
909 g g(=1.D) ¢ g(1.=1) be the corresponding Hodge decomposition and we let pj, = g(®0 @
g~ The parabolic py, is conjugated to pg; by some element g € ge, and our positive
roots are in ad(g).(g(®?) @ g(=11).

Let K C GSpy(Ay) be a neat compact open subgroup. We let S = GSp,(Q)\H x
GSp4(Ay)/K. This is the complex analytic Siegel threefold of level K. It can be interpreted
as a moduli space of abelian surfaces with additional structures. See [47], sect. 3 for
example.

4. 7 is of general type if it has a base change to a cuspidal automorphic representation on GL4.
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5.2.2. Minimal compactification. — Let S}, be the minimal compactification of Sk (see
[64], sect. 3 for example). There is a stratification of S} :

Se [T T 5%

Let H) = C\ R and H® = {1, -1}.

S = Pri(@\HD x G(Af)/K

is a union of modular curves and

SO — Po(@\H©® x G(Af)/K

is the union of cusps of these modular curves. The parabolics Pk;(Q) and Pg;(Q) act
diagonally. They act on H! and H° through their quotients Mgy; ,(Q) and Mg; ,(Q). We

let S’E(l)’* = Sg) 11 Sg). This is a union of compactified modular curves.

5.2.8. Toroidal compactification. — Depending on a certain auxiliary choice of polyhedral
cone decomposition ¥, one can also construct toroidal compactifications S}?TE of Si. There

is a semi-abelian surface G — S}?TE. See [29], sect. 2.

5.3. Coherent cohomology and Galois representations. — Over S}?TE, we have
a semi-abelian surface G. We let wg — Sﬁ?”’z be the conormal sheaf of G at the unit
section. This is a locally free sheaf of rank 2. For all pairs of integers (k,r) € Z>o X Z,
we define an automorphic vector bundle Q*7) = Symka ® det” wg on S}‘(’TZ. We let
Dgiys = S}?TE \ Sk,». This is a Cartier divisor. We can consider the cuspidal subsheaf
QP (—Dgx) (or simply Q*7)(—D) if no confusion will arise) of Q7).

We will be interested in the coherent cohomology groups H(S%%,, Q57)(—D)). These
cohomology groups are independent of the choice of ¥ ([30], prop.7 2.4). Our main focus
will be on the case r = 2, i € {0,1}.

If 7 =7 ® 7y and moe = 7(A,C) is a holomorphic (limit of) discrete series with
A = (A1, A2;—A1 — A2 + 3) (and hence 0 > A2 > A;), then there is a natural embedding
mf = HO(Sjer, Qe mL2=%2) (D)),

It follows from the description of representations having a “lowest weight” given in
[67], p. 12 diagram (44) that for all » > 2 :

HO(S2%, Q" (=D)) = @, wf,

where 7y runs through the set of admissible representations of GSp,(Af) such that
m(A, C) ® 7y is cuspidal automorphic for A = (1 =k + 7,2 —r;k + 2r) and 7(X,C) the
holomorphic (limit) of discrete series.

We let N be the product of primes ¢ such that K, # GSp,(Z¢). We let HY = ®’@(N’HZ
be the restricted tensor product of all the spherical Hecke algebras.

The Hecke algebra H”" acts on H"(S}?TE, Q) and Hi(S}?’TE, Q) (—D)) (see [30],
prop. 2.6). Let us briefly recall how the action is defined (and which normalization factors
are involved). For certain choices of polyhedral cone decompositions X, %' and ¥, we can
define Hecke correspondences attached to the double coset Ty ; (see [18], p. 253) :
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tor
SK (£3),8"
% K
tor tor
SK,Z’ SK,Z

where K(¢,1) = KN dZilK de; (for dy; is the diagonal matrix whose associated double
coset gives Ty;). Attached to this data is an isogeny p7G — p3G, whose differential
provides a natural map pgﬁ(k’r) — p’{Q(k””). On the other hand, the map p; carries a

fundamental class p7 & Ster, X ster, (see section 4.2.1). Taking the tensor product we
get a cohomological correspondence Té,i : pgﬁ(k”’") — pll ﬁs}gfz- We now set Ty o = £_3Tlf’2

and Ty; = ¢=°T}, for i € {0,1} and denote in the same way the operators on cohomology.

Remark 5.3.1. — The explanation for the powers of £ in the formula defining the Hecke
operators is the following. The sheaf Q) is attached to the representation of K« of high-
est weight (k+r, r; —k—2r) by the vector bundle dictionary and therefore the automorphic
forms contributing to the cohomology have infinitesimal character (1—k —r,2—r; k+2r).
We introduce a twist to fix the infinitesimal character to be (1 —k —r,2 —r;k 4 2r — 3)
because when r is greater than 2, this twist optimizes the integral properties of the op-
erator Ty (it makes it integral on g-expansions) and normalizes the greater Hodge-Tate
weight to be 0. Consult also [18], p. 258 (the paragraph starting by “what is happening
77) for further explanations.

Let © : HN — C Dbe a system of eigenvalues for the action of HY on the coherent
cohomology H' (S, Q*1)) and H' (S, Q*1)(=D)). The following theorem is deduced
from theorem 5.1.7.1 in [76] and [63], using p-adic interpolation :

Theorem 5.3.1. — The image of © generates a number field E. For all finite place A of
E there is a semi-simple, continuous Galois representation :

po.: Gg — GL4(E)),

which is unramified away from N and the prime p below A and such that for all 1 Np,
we have

det(1 — X pe »(Froby)) = O(Qu(X)).
Proof. If £ > 0 and r > 3, then
HO (512, @k (—D)) = el

where ¢ runs through the set of admissible representations of GSpy(Af) such that
(A, C) ® my is cuspidal automorphic with A = (1 =k —r,2 — r;k + 2r). Thus, when
k > 0,r > 3, we can use theorem 5.1.7.1. The general case follows from the main result
of [63] (but see already [76] for degree 0 cuspidal cohomology) by p-adic interpolation
techniques. ]

Remark 5.3.2. — One believes that the representations constructed in the theorem are
de Rham with Hodge-Tate weights (0,7 — 2,7 + k — 1,k + 2r — 3) and crystalline at p if
(N,p) = 1. Such a statement seems accessible if the weight is cohomological ) although
we do not know a reference. In particular, if (N, p) = 1 one believes that if («, 3,7, 0) are

5. The cohomological condition is that r # 2, k+7r # 1 and k4 2r # 3, so that the Hodge-Tate weights
are all distinct. It ensures that the coherent cohomology group appears in the Hodge decomposition of the
cohomology of an automorphic local system over the Shimura variety.
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the Hecke parameters attached to a local representation m, contributing to the cohomology
H(Ster,, Q) or HY (S, Q1) (—D)), the Newton polygon associated to (a, 3,7,9) is
above the Hodge polygorf with the same initial and ending point. This is last statement
is a consequence of the main theorem of [45] if the weight is cohomological.

PART II
HIGHER HIDA THEORY

6. Siegel threefolds over 7Z,

6.1. Schemes. — We fix a prime p. We introduce several Siegel threefolds defined over
Spec Z, and study their p-adic geometry.

6.1.1. The smooth Siegel threefold. — Let K C GSpy(Af) be a neat compact open sub-
group. We assume that K = KPK), and that K, = GSp,(Z,). We let Yz, — Spec Zy,)
be the moduli space representing the functor which associates to each locally noetherian
scheme S over Spec Z,) the set of isomorphism classes of triples (G, A, ) where :

1. G is an abelian surface,

22.0:G = Glis a Z(Xp)—multiple of a polarization of degree prime-to-p where G*
stands for the dual abelian scheme of G,
3. 9 is a KP-level structure : if S is connected and s is a geometric point of .S, 9 is a
KP-orbit of symplectic similitudes Hi(G, A”) ~ V ®z A% that is invariant under
the action of (S, s) ) (V is defined in section 5.1).
The triples (G, A1) are taken up to prime-to-p quasi-isogenies. See [44]. There is an
isomorphism (YK,Z<p) x Spec C)* ~ Spi. We shall denote by Yx = YKZ<p) X Spec Z
Spec Zy.

(p)

6.1.2. Klingen level. — We denote by p1 : Yii(p)k — Yx the moduli space which
parametrizes subgroups of order p, H C G[p]. Over Ygy;(p)x we have a chain of iso-
genies of abelian surfaces G — G/H — G/H* — G. Here H™ is the orthogonal of H
for the Weil pairing on G[p] (obtained by the polarization). The total map G — G is
multiplication by p.

6.1.3. Paramodular level. — We also introduce Y,ar k — Spec Z,, the moduli space of
isomorphism classes of triples (G’, X,1) where X : G’ — (G')! is a Z(Xp )—multiple of a
polarization of degree p? and v is a KP-level structure. We have a natural map ps :
Yicii(p)k — Ypar,x which sends (G, \, H, 1) to (G/HL, N,4') where X is the polarization
on G/H+ obtained by descending the polarization p?) from G to G/H* and v’ is induced
by the isomorphism G[N] = G//H*[N] for every integer N prime-to-p.

6.1.4. Local properties. — We now investigate the local geometry of these schemes.

Proposition 6.1.4.1. — The scheme Y is smooth over Spec Zy. The schemes Ypar i
and Yii(p) i are reqular schemes. They are flat, local complete intersections over Spec Zy.
The non smooth locus of Ypar, i consists of a finite set of characteristic p points.

6. This definition does not depend on s. When S is not connected, one chooses geometric points on
each connected component.
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Proof. The smoothness of Y over Z, results from the deformation theory of abelian
varieties with a polarization of degree prime-to-p. For Y ;(p)k, the local model theory
computation is worked out in [79], sect. 2.2, thm. 3. For Y, x we can again use local
model theory (see [17]). Let Vi = pe1Z® @, e;,Z C V (V is defined in section 5.1). The
local model for Y., i is the moduli space of totally isotropic direct factors L C Vi of rank
2. The only singularity occurs at Lo = (peq,es) C Vi ® F,,. The formal deformation ring
at this point has equation Z,[[X,Y, W, Z]] /(XY — W Z +p) and the universal deformation
of Lo is the module (pe; + Xea + Wes, Zea + Yez + es) (see also [86], theorem 4.4). [

6.1.5. Integral arithmetic compactifications. — We recall results of Faltings-Chai [18],
Lan [48], [49], [50] and Stroh [74].

6.1.5.1. Arithmetic groups. — Let I' = (}Sp4(Z(p))Jr be the group of automorphisms of
(V®Zp), < . >) up to a positive similitude factor. Let Vi = pelZEB@f‘ZQ e;Z CV. Welet
GSpl; — Spec Z be the group scheme GSp(V;, < . >). This is the paramodular group. Let
Ipar = GSpy(Zp))* be the subgroup of GSpy(Zy)) of elements with positive similitude
factor. Let I'kyi(p) be the automorphisms group of (Vi ® Zgpy — V ® Z,), < . >) up

to a positive similitude factor. Thus, I'k;(p) is a subgroup of both I and I'p,,. All are
subgroups of GSp,(Q).

6.1.5.2. Local charts. — Let € be the set of totally isotropic direct factors W C V.
For all W € €, let C(V/W+) be the cone of positive symmetric bilinear forms V/W+= x
V/W+ — R with radical defined over Q. Let C be the conical complex which is the quotient
of [Tyyee C(V/W) by the equivalence relation induced by the inclusions C(V/W+1) C
C(V/Z*Y) for W C Z. This set carries an action of GSp,(Q).

Let W € €. Recall from section 5.1.2 that Py is the parabolic subgroup which is
the stabilizer of W, that My, = My, x My, is its Levi quotient. There is a projection
Py — My and we let Py, be the inverse image of My, € Pyy. Let y € GSp4(AI})/Kp.
We can attach to W and v moduli spaces of 1-motives (see [74], sect. 1 and [48], sect.
6.2) which only depend on the class of 7 in GSp4(A§)/Kp :

MW,’V MW%K li(p) Mmear
BW,'Y BW,%Kli(p) BW,%par
Yivy Yy, Kti(p) Yy par

The scheme Myy, is a moduli space of polarized 1-motives (for a polarization of
degree prime-to-p), rigidified by V/W+ ([74], def. 1.4.3) with a K-level structure.

The scheme My, admits the following description : it is a torsor under a torus Ty,
isogenous to Sym?(V/W+) ® G, over By . The scheme By is an abelian scheme over
Y, which is a moduli space of abelian schemes of dimension rankzW with a polarization
of degree prime-to-p and a level structure away from p.

The scheme My, kii(p) is @ moduli space of polarized 1-motives (for a polarization
of degree prime-to-p), rigidified by V/W+ with a K-level structure and a Klingen level
structure.

The scheme My, ky(p) admits the following description : it is a torsor under a torus
Ty, k1i(p) 1S0genous to Sym?(V/W+) ® G,, over By, kii(p)- The scheme By, ki) 18



28 Higher coherent cohomology and p-adic modular forms of singular weights

an abelian scheme over Yy, kii(p) which is a moduli space of abelian schemes of genus
rankyz W with a polarization of degree prime-to-p a level structure away from p and possibly
a Klingen level structure at p (7).

The scheme My, par is @ moduli space of 1-motives with a polarization of degree
Np? (with (N,p) = 1, the integer N depends on the tame level K?). The character group
of the toric part is isomorphic to V3 /W, It carries a K-level structure.

The scheme My y par admits the following description : it is a torsor under a torus
Tw,,par iSOgenous to Sym?(V/W+) ®G,, over Bw,y par- The scheme Byy 4 par is an abelian
scheme over Yy, which is a moduli space of either abelian schemes of genus rankz W with
a polarization of degree prime-to-p, a level structure away from p or a moduli space of
abelian schemes of genus rankz W with a polarization of degree a prime-to-p multiple of
p? and a level structure away from p.

Let 0 € O(V/W) be a cone. Associated to this cone we have affine toroidal em-
bedding Tw — Twy,or Twy,kxtip) = Twa,Kilip),o A Ty par = Twyypare. We can
define My o = My x Twy Twry,oy Mwy,Kili(p),o = Mw,Kli(p) x T K1i(e) Tw y,Kli(p),o»
My par,e = M,y par x Tw.y par Tw, par,o;, and we denote by Zw,y o, 2w,y Kii(p),c and
ZW,par,c the closed subschemes that correspond to the closed strata of these respective
affine toroidal embeddings.

6.1.5.3. Polyhedral decompositions. — We consider the set C x GSp4(AI})/Kp. This set
carries a diagonal action of GSp,(Q) and a left action of GSp4(A?) (by translation on the
second factor).

A non-degenerate rational polyhedral cone of C x GSp4(A?) /KP is a subset contained
in C(V/W+) x {7} for some (W,v) which is of the form @¥_;R~s; for symmetric pairings
s VIWLE x V/WE = Q.

Let us fix a Z-lattice Ly € Sym?(V/W+)®z Q. Then the cone is called smooth with
respect to Ly if the s;’s can be taken to be part of a Z-basis of Hom(Lyy, Z).

A rational polyhedral cone decomposition ¥ of C x GSp4(A7;c) /KP is a partition
C x GSp4(A?) /KP =[],c5, 0 by non-degenerate rational polyhedral cones o such that :

1. the closure of each cone is a union of cones,

2. for any 0 € ¥, 0 C C(V/W+) x {7}, we have that po € ¥ for all p € PW’h(A?).

For any subgroup H C GSp,(Q) a rational polyhedral cone decomposition ¥ is H-
equivariant if for all h € H and 0 € X, h.o € X. It is H-admissible if H\X is finite. It is
projective if there exists a polarization function (see [50], def. 2.4).

For all (W,v) € €x GSp4(A?)/Kp we have integral structures X, (Tw,y), X« (Tw,y,par)

and Xo(Tw,, k1i(p)) C Sym?(V/W+)®z Q. We say that a rational polyhedral cone decom-
position 3 is smooth with respect to one of these integral structures if each cone o € ¥ is
smooth.

Let H be either I', I'par or I'gi(p). The H-admissible rational polyhedral cone decom-
positions exist and are naturally ordered by inclusion ([18], p. 97). Any two H-admissible
rational polyhedral cone decompositions can be refined by a third one.

The H-admissible rational polyhedral cone decompositions which satisfy the following
extra properties form a cofinal subset of the set of all H-admissible rational polyhedral
cone decompositions (see [18], p. 97) :

1. The decomposition is projective.

7. This depends on the relative position of W with respect to Vi C V.
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2. For all cone o, let W € € be minimal such that o C C(V/W=). If h € HN Py
satisfies hpo N o # () for some p € PW,h(Afc), then h acts trivially on C(V/W).

3. If His I' (resp. I'par, resp. I'kyi(p))-admissible, the decomposition is smooth with
respect to the integral structure given by X, (Tw,), (resp. X.(Tw,y,par), resp.
X*(TW,'y,Kli(p)))'

In the sequel of the paper we will consider mostly H-admissible rational polyhedral
cone decompositions which satisfy these extra properties unless explicitly stated. We will
call them H-admissible good polyhedral cone decompositions or simply good polyhedral
cone decompositions.

6.1.5.4. Main theorem on compactification. — The following theorem is a special case of
[50], thm. 6.1.
Theorem 6.1.5.1. — 1. Let ¥ be a good polyhedral cone decomposition which is

I' (resp. T'kii(p), resp. DI'par)-admissible. There is a toroidal compactification
XKy of Y (resp. Xkii(p)ky of Ykii(D)i, resp. Xpar,kx of Ypar, k). It has a
stratification indexed by T\X (resp. T'kii(p)\X, resp. I'par\X). For each (o,7) €
3, the (0,7)-stratum is isomorphic to Zy .o (1esp. Zw.paros T€SP- Ly, Kli(p),o)-
The completion of Xy (resp. Xiii(p)kx, resp. Xpar,kxx) along Zyw ..o (resp.
2w Kli(p),or T€SD- ZWypar,o) 5 isomorphic to the completion of MVI/,’Y,CT along
ZWn,o (resp. My Kiip),c Aong Zyw ~ Kili(p),os T€SP- MWy paro along ZWny par,o-)
The boundary is the reduced complement of Yi in Xk x5 (resp. of Ykii(p)k in
Xkii(p)rx, resp. of Ypar,k i Xpar.k,5). This is a relative Cartier divisor.

2. If ¥/ C X is a refinement, then there are projective maps syt Xy — Xgox
and (RTFZ}/,E)*@)XK,E, = Oxyy- Let Ixy and jXK,E’ be the invertible sheaves
of the boundary in Xk and Xk sy. Then W%’,EJXK,E = jXK,ﬁ" Similar results
hold for Xpar ik » and Xgiip) k.-

3. If ¥ is T'-admissible and ¥/ is a refinement which is T ky;(p)-admissible, then the
map p1 : Yriu(p)xk — Yi extends to a map Xgu(p)ryy — Xz If ¥ is Ipar-
admissible and X' is a refinement which is T ky;(p)-admissible, then the map py :
Yrii(p)k — Ypar, ik extends to a map Xgi(p) ks — Xpar, k-

4. If ¥ is T (resp. T'iii(p), resp. T'par )-admissible, then the toroidal compactification

Xk of Yk (resp. Xgii(p)k,x of Ykii(p)k, resp. Xpar,k,s of Ypar, k) is normal
and a local complete intersection over Spec Zy.

Proof. All points follow from [50], thm. 6.1 and prop. 7.5, except for the last point which
follows from the description of the local charts, proposition 6.1.4.1 and our knowledge
of modular curves. Let us recall that in the case of Y, the toroidal compactification
is constructed in the book [18]. In the case of Ypar k, the method of [49] and [50] is
to embed Yjar x in a Siegel moduli space of principally polarized abelian varieties of
genus 16 (Zarhin’s trick). The latter can be compactified by the methods of [18]. The
compactification of Y., i is obtained by normalization. The toroidal compactification of
Ykii(p)k is constructed in [74]. It is also constructed in [49], [50] by first embedding
Y1 (p)k in the product Yy ik X Y, then considering the toroidal compactification of the
product and then normalizing. O

Notation : We often drop the subscript K or ¥ and simply write X, Xpar and
Xxkii(p) for Xg s, Xk1i(p)k,x and Xpar k5.

6.2. Sheaves. — We recall the definition of the classical automorphic sheaves as well
as the vanishing theorem for the projection to the minimal compactification.
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6.2.1. Definition. — We now define several sheaves of modular forms. Over X we have
a rank 2 locally free sheaf wg := e*Qé/X. For all pairs (k,7) € Z>o X Z we set Qkr) =

SymFwe @ det” we. For simplicity, we sometimes write w” instead of Q") and QF instead
of Q*:0) " Similarly, over Xpar we have a rank 2 locally free sheaf e*Qé, X par If no confusion

arises, we still denote this sheaf by Q!. We define similarly Q7). The sheaves Q") satisfy
the expected functorialities with respect to change of polyhedral cone decomposition and
level structure away from p. It follows from theorem 6.1.5.1, point 2 (and an application
of the projection formula) that the cohomology of these sheaves does not depend on the
choice of a particular polyhedral cone decomposition.

6.2.2. Vanishing theorems. — According to [18], [49] and [50], we can construct minimal
compactifications X* and X;ar for Y and Ypar,x. They are defined as the Proj of the
graded algebras @;>oH%(X, wk) and @kZOHO(Xpar,wk). The sheaves w descend to ample
sheaves on X* and X,,. We have canonical morphisms 7 : X — X* and mpar @ Xpar —
X*

par*

Theorem 6.2.2.1 ([50], thm. 8.6). — For all (k,r) € Z>0 X Z and i > 0, we have

Rm Q) (=Dx) =0
and

RZ (Wpar)*Q(kJ) (_DXpar) = 0

6.3. Hasse invariants. — In this section, let S be a scheme over Spec F,,. If H — S is
a group scheme, we denote by wg the conormal sheaf of H along the unit section.

6.3.1. The classical Hasse invariant. — Let G — S be a truncated Barsotti-Tate group
of level 1 (BT} for short). We have a Verschiebung map V : G®) — G with differential

Vi wg — ng ) also called the Hasse-Witt operator. The Hasse invariant is Ha(G) :=
det V* € HO(S, (det wg)P~1). We let GP be the Cartier dual of G. We recall the following
result of Fargues.

Proposition 6.3.1.1 ([21], 2.2.3, prop. 2). — There is a canonical and functorial iso-
morphism LF : (detwg)P~! ~ (detwen )P~ such that LF(Ha(G)) = Ha(GP).

Suppose that we have a quasi-polarization X\ : G = GP. By definition, this is an
isomorphism that satisfies the extra condition AP = —\.

Lemma 6.3.1.1. — The composite (detwgp )Pt X (det wg )Pt Ly (det wep )P~L is the

identity map.

Proof. We first assume that G is ordinary. Thus Ha(G)0s ~ (det wg)P~! and similarly,
Ha(GP)0g ~ (detwep)P~!. By functoriality, N*Ha(GP) = Ha(G). Since LF(Ha(G)) =
Ha(GP) we deduce the claim. The algebraic stack of quasi-polarized truncated Barsotti-
Tate group schemes of level 1 is smooth with dense ordinary locus by [36]. We can thus
deduce the lemma in general. O

6.3.2. Another Hasse invariant. — We assume that S is reduced, that G is a BT} of height
4 and dimension 2, and that the étale rank and multiplicative rank of G are constant, both
equal to 1. In this setting, the classical Hasse invariant vanishes identically on S. We recall
the construction of an other Hasse invariant in this situation (this is a very special case
of more general constructions of Boxer [5] and Goldring-Koskivirta [27]). We have a
multiplicative-connected filtration over S :

G" Cc G° CQG.
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We set G° = G°/G™. This is a BT) of height 2 and dimension 1. Let & =
Extl. (G, Os/specr,)s- 1t carries the Hodge filtration:

cris

-1

0 — wgoo — € — Wi goo)

» — 0.

There is a map V* : £ — £ The map V*|wgeo @ wgeo — w’éoo is zero (because it

is zero pointwise and S is reduced). The map V*|w(§oo) D - w(&oo)

zero (this map is the differential of Frobenius on the Lie algebra of (G°°)P). Passing to
the quotient, we get an isomorphism V* : w(éoo) p = Wheo. We set Ha'(G°) = (V*)P~1 €

—p )
D = WGooyp 18 also

HY(S, wg(fo_l) ®w€ 5010) ») ~HO(S, wgojl). We are using here the isomorphism LF to identify
1

1 _
D oorp ANd W, .

(Goo)
We define the following invertible section (which we call the second Hasse invariant):

Ha/(G) = Ha(G™)P*! @ Ha/(G*) € H(S, (det we)” ™).

W

Let GP be the Cartier dual of G. It satisfies the same assumptions as G and we can define
Ha'(GP). We have a map LF®P) : (det we)P"~* ~ (det wgp )P L.

Lemma 6.3.2.1. — The following identity holds : LF®®+t)(Ha!(G)) = Ha'(GP).

Proof. Since S is reduced, we need only to check the equality on points. Thus, we can
reduce to the case where S is the spectrum of an algebraically closed field. In this case,
there exists a quasi-polarization X : G — GP. The composite

* (p+1)
(det U)GD)p2_1 X (det wc)p2_1 LEEH (detwg)p2_1.
is the identity map by lemma 6.3.1.1. On the other hand, \*(Ha/(GP)) = Ha/(G) by
functoriality. It follows that LF®®+D (Ha/(G)) = Ha/(GP). O

6.3.3. Extension of the second Hasse invariant. — We are going to prove that the second
Hasse invariant can be extended under some hypothesis. This is again a very special case
of extensions considered by Boxer [5] and Goldring-Koskivirta [27]. We now assume that
S is a normal reduced scheme and that G is a BT} of height 4, dimension 2 over S. We
suppose that the generic étale rank and multiplicative rank of G over S are equal to one.

We let S’ be the dense open subscheme of S where G has étale rank and multiplicative

rank one. We moreover assume that over S, the Hasse-Witt map V* : wg — wg) ) has rank

1 : this means that Ker V* is an invertible sheaf and locally a direct factor of wg. The
next lemma shows that G satisfies the same hypothesis as G.

P)

Lemma 6.3.3.1. — The map V* : wgp — wéD has rank one.

Proof. Let & = Ext. (G, Osr,)s- As in [21], p. 915, one proves that there is a short

exact sequence of perfect complexes (the complexes are the horizontal ones) :

wag HV wg)




32 Higher coherent cohomology and p-adic modular forms of singular weights

The map F* : (w/, )@ — wlp is the dual of the map V* : wgp — w(GpL),. Taking the long

exact sequence in cohomology shows that this last map has rank one. O

Over S, we have a multiplicative subgroup H = G™ C G[F] := Ker F.

Lemma 6.3.3.2. — The group H extends to a finite flat group scheme H C G[F] over
S.

Proof. Consider the map V : G[F]®) — G[F]. We prove that the kernel K of this map
is a finite flat rank p group scheme (locally isomorphic to cy,). Note that K is also the

kernel of F : GP[V] — G®)[V]. The Hodge-Tate map provides a long exact sequence
(see [21], sect. 2.1.2) :

(»)

HT F-V*
0= KerF - G = wgp = Weip-

In this last equation, wgp and w(Gpl))

twisted forms of G2), we use F to denote the Frobenius on G and wgp, and V* is the
Hasse-Witt map of GP.

Moreover, G/KerF ~ GP)[V]. Tt follows that K ~ Ker(wgp|[F] LN wg,)j [F]) (where
wep[F] is a twisted form of a2) is a rank p group. We now set H = G|[F] ) /K < G[F).

This is the extension we are looking for.

are taken as vectorial group schemes (so they are

O]

Remark 6.3.3.1. — The referee suggests another proof of the lemma : because S is
reduced, it is enough to check that K = Ker(V : G[F]®) — G[F]) is of rank p on geometric
points, and this boils down to an elementary computation with Dieudonné modules.

Applying the lemma to G, we also get a subgroup L C GP[F]. We now consider the

chain of maps G Law Y g Applying the functor Extl . (—, Osr,)s and setting £ =

Extl . (G,0 s/rF,)s yields the following diagram (whose columns are short exact sequences
giving the Hodge filtration):

(6.3.A) w0 g W
sy e V' el

(wéD)(p) —wp _ 0 (wgD)(p)

The map V* : wg — wg)

quences):

fits in the diagram (whose columns are short exact se-
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()
(6.3.B) w(;[F]/H wa')[F}/H
v (»)

We retain from this diagram the two maps : V} : wy — wg) and W : wg[)ﬂ I
wd IV*(wa).

Lemma 6.3.3.3. — The maps V}; and W vanish on the complement of S’. Moreover,
they have the same order of vanishing.

Proof. Let x be a generic point of one component of S\ S’. We work over the discrete
valuation ring Os,. We take a basis ej,e2 for wg, and fi, fo for wg)x such that ey

generates wgp)/p and fi generates w(Gp[)F} JH The matrix of V* in this basis has the form

b 0)

where b € mg, and a € O bf ., since V7 vanishes at x and V* has rank one. The claim is
now obvious. O

The map V* of diagram 6.3.A induces, after passing to the quotient, a map

Z : wéD/F*(w\éD)(p) — wgf)/V*wg.

Lemma 6.3.8.4. — There is a canonical isomorphism wéD/F*(wéD)(p) = (wepipy/n)"-

Proof. The map F* : (wlp)?) — wlp is dual to V* : wgp — w(Gpl), and the kernel of V*

I8 wgp(p)/r, by the analogue of diagram 6.3.B for GP. t
We can define a rational section (V)P @ (W10 Z)P~! of the sheaf w?j_l ®wgﬁ}}l®

p—1

Yepr) /L

Lemma 6.3.3.5. — This section is reqular and vanishes precisely over S\ S'.

Proof. This follows from lemma 6.3.3.3 since p+1 > p — 1. O

We can finally prove :

Proposition 6.3.8.1. — The Hasse invariant Ha/(G) € HO(S’,wgfl) extends to S.

Moreover, it vanishes precisely on S\ S'.

Proof. It is enough to prove the claim for (Ha/(G))? = Ha/(G) ® Ha/(GP) (see lemma
6.3.2.1) because S is normal. Call A = (V)P @ (W10 Z)P~! the section of the sheaf

w%Q g wgﬁ;]/l}{ ® wé}l[ Fyn e just constructed. Exchanging the roles of G and GP, we

obtain a section B of wf*l ®wg(g[}}]) L ®wgﬁ] /#r- By definition, the product A® B extends

(Ha!(G))2. O
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6.3.4. Functoriality. — Let S be a scheme over Spec Fp. Let G, G’ — Spec S be Barsotti-
Tate groups. We recall that if A : G — G’ is an étale isogeny, then \* : wy — wg is an
isomorphism and moreover A*Ha(G’) = Ha(G). If we are in a situation where the second
Hasse invariant is defined, we also have A*Ha'(G’) = Ha/(G). We want to obtain similar
results in the case of non-étale isogeny.

Lemma 6.3.4.1. — Assume that G and G’ are Barsotti-Tate groups of multiplicative
type. Let A : G — G’ be an isogeny. Then we can define a canonical isomorphism. :

N det wgr — detwg.
Moreover, N*Ha(G") = Ha(G).

Proof. Let p” be the degree of \. We have G = T ®z, pip and G’ = T' @z, jip~ for
two smooth pro-étale sheaves T' and T”. The map \ provides a map \g : T — 1" which
induces an isomorphism p~"det \g : detT — detT”. Since detwg = detT ® Wypeo and
detwe = detT’ ® Wp,eo We get a canonical isomorphism A\* between these two. There
are canonical trivialisations F, ~ (detT/pT)P~! and F, ~ (detT’/pT’')’~1. In these
trivalisations we have Ha(G) = 1@Ha(pp~ ) and Ha(G’") = 1®Ha(pupe ) which are identified
via the map \*. O

Lemma 6.3.4.2. — Let G and G’ be Barsotti-Tate groups. We assume that they have
constant multiplicative rank over S. Let A : G — G’ be an isogeny with kernel L C G|p].
Assume that for all geometric points x — S, there exists a multiplicative group Hy C G4[p]
such that Hy & L, = Gy[p]. Then there is a canonical isomorphism

N detwg — detwg.
Moreover, MHa(G') = Ha(G). If the second Hasse invariant is defined, we also have
MHa'(G') = Ha/(G).

Proof. We have filtrations by multiplicative Barsotti-Tate subgroups G™ C G and
(G")™ C G’ (see for example corollary II1.1.2 of [31]). Let L™ = L N G™. Then we
have a commutative diagram :

Gm G G/G™
(@) —= G —=G[(G)"

where the left vertical map has kernel L™. The isogeny G/G™ — G'/(G')™ can be uniquely
written in the form pu where p is an isomorphism. Indeed, L/L,, — G/G™|p| is a finite
flat group scheme whose rank is equal to the rank of G/G™[p] by our assumptions, so we
deduce that L/L,, = G/G™[p]. The map p induces p* : detwer(grym 5 det wa/gm- The
above lemma provides an isomorphism (S\m)* : det w(grym — detwem. The tensor product

of these two maps is the isomorphism we are looking for. The other properties are obvious.
O

6.4. Stratification of the special fiber. — We will now stratify the special fibers of
the Siegel threefolds. We denote by G the semi-abelian scheme over X and by G’ the
semi-abelian scheme over Xp,,. For all n € Z>1, we let X,, — Spec Z/p"Z be the mod p"
reduction of X and Xpa,, the reduction modulo p™ of Xp,,.
For r € {0,1,2}, we set :
— X, the locally closed subset of X,, where the multiplicative rank of G is exactly
T?
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— X=" the closed subset of X,, where the multiplicative rank of G is less than r,
— X7, the open subscheme of X,, where the multiplicative rank of G is greater than

T
We define similarly X770, ngafm and sza’;’n. We recall that X" is dense open in
X5 that X par.n is dense open in ngac",n and they are of dimension 3 — r (see [57]).

We now specify the schematic structure. We let w denote the invertible sheaf det wg
over X1 or detwgr over Xpar1 (no confusion should arise). We have two Hasse invariants
Ha(G) € HO(X1,wP™ ') and Ha(G') € H*(Xpar,1,wP™!). Their definition was recalled in
section 6.3.1 in the context of abelian schemes. The same definition works for semi-abelian
schemes (take the determinant of the differential of Verschiebung). Alternatively, we can
use Koecher’s principle. We let XlSl be the vanishing locus of Ha(G) and Xfail be the
vanishing locus of Ha(G").

Lemma 6.4.1. — The schemes XlSl and Xsalnl carry the reduced schematic structure.

Proof. The scheme X; is smooth, hence normal. The scheme X, 1 is smooth up to a
dimension 0 set and is Cohen-Macaulay by proposition 6.1.4.1. By Serre’s criterion, it is
also normal. It follows that it suffices to prove that Ha(G) and Ha(G’) vanish at order
one at each generic point of the non-ordinary locus. Let k be an algebraically closed field
of characteristic p and let = : Spec k — X7 or x : Spec k — X;h- Let H — Spec k
be the p-divisible group associated to x. The contravariant Dieudonné module D of H is
isomorphic to the 4-dimensional free W (k)-module with canonical basis (e, e2, e3, e4) and

with Frobenius matrix given by :

oo
o3 O o
OO~ O
— o o O

It is the sum of three direct factors W (k)es @ (W (k)ex & W (k)es) @ W (k)es, corre-
sponding to the multiplicative-biconnected-étale decomposition. We find that the Hodge
filtration is given by Ker(F) = (e1,e3) C D/pD.

By [36], the universal first order deformation of H is represented by

R=k[X,Y,W,Z|/(X,Y,Z,W)?

where the universal Hodge filtration F'il inside D Qyy(xy R is generated by the columns of
the matrix:

~—

1 0

0 1

X Y
w Z

The Hasse-invariant of the universal deformation is the determinant of F': D ® R/Fil —

D ® R/Fil. The matrix of F' in the basis e3,é4 of D ® R/F'il is:

(2 1).

In order to find the universal deformation of  we need to incorporate the polarization. We
will show in all cases that the tangent space is not contained in Y = 0. This will prove that
the Hasse invariant defines a non-zero linear form. There is a unique principal polarization
on D, induced by the symplectic form of matrix J (see section 5.1). In the principally
polarized case, the tangent space at x is given by the subspace where the filtration is
isotropic with respect to this polarization. This condition writes X = Z. The principal
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polarization identifies D with D! and Fil(D') = Fil* is generated by the columns of the
matrix:

0
1
Y

N o -

W X

In the paramodular case, the polarization A : D — D! identifies with diag(1,p,p,1)
or diag(p,1,1,p). The condition defining the tangent space are \(Fil) C Filt and
AV (Fil*+) C Fil. In the first case we find that Z = 0, in the second case that X = 0. [

In section 6.3.2 we have defined a second Hasse invariant. The construction applies
to the open subscheme of X7 ! and Xpar 1 where the semi-abelian scheme is an abelian
scheme. We check that the second Hasse invariant extends to the boundary. Indeed, we can
consider the connected component of the identity in G[p] and G’[p], that we denote by G|[p]°
and G'[p|°. These are truncated BT of level 1, height 3, dimension 2 and multiplicative
rank 1 to which we can apply the construction of section 6.3.2. As a result, we have two
Hasse invariants Ha/(G) € HO(XT! ,wP’~1) and Ha/(G') € HO(Xpar 1, W wP* 1.

Lemma 6. 4 2. — The second Hasse invariants Ha'(G) € HO(XT!, w?’~1) and Ha' (G’) €

HO(X =L wP’~1) extend to X=!and X3

<1 . <0
par,1) W par,1- Moreover, they vanish on X7 and XS

par 1

Proof. Recall that an abelian surface is called superspecial if it is isomorphic to the
product of two supersingular elliptic curves. There are only ﬁnitely many superspecial
points on Xp,r,1 and X by [56]. Call this finite set SS. Since Xiar , and X 1 are Cohen-
Macaulay, it suffices to construct the extension over the complement of SS Moreover,
since we removed the superspecial points, the Hasse-Witt matrix has rank 1. We now prove
the smoothness for X 1§1 \ SS. Over X 1§1 \ SS, we have a canonical filtration H C KerF
where the group H is constructed in lemma 6.3.3.2 . As a result, XlSl \ SS embeds in
the moduli space of abelian surfaces with a polarization of degree prime-to-p and with
Iwahori level. The local model is computed in detail in [62], page 186 to 189. We find
that X='\ S5 is exactly the union of the strata denoted X{"* and X% in that reference.
We see that this union of strata is smooth. We compute that the closure of X" is locally
isomorphic to

Spec Fplz,y,a,b,c]/(zy, ax + by + abe, a,y, x + be) ~ Fy[b, |

where X" is corresponds to the stratum be # 0 and XSQ’F corresponds to the stratum
¢ =0,b# 0. The extension of Ha/(G) over XlSl \ S5 follows from proposition 6.3.3.1.

We now prove that Xmlr 1\ 55 is locally isomorphic to Spec Fp[a, b, ¢]/(ab) with a # 0

By proposition 6.3.3.1 we deduce that Ha'(G’) extends

or b # 0 corresponding to Xpa“r 1-
on each 1rredu01ble components of XS par,1 \S S. Moreover, to check that it glues to a section

over X< par, 1 \ SS we need to prove that the values of Ha/(G’) agree on the intersections

of the irreducible components. Since this value is zero, this is true. Over Xpar 1\ SS we
have a chain G’ - G — (G')! -+ G"” — G’ — G. This chain is constructed as follows. Let
K ()) be the kernel of the polarization G’ — (G')! and K (A\!) the kernel of the polarization
NG — G. Set H=K(\)NKer F and set H = K(\')NKer F. These are groups of
order p because K (\) and K (A\') are BT} of height 2 and dimension 1. We set G = G'/H
and G” = (G')!/H’. This chain provides an embedding of Xpar 1 \ S5 in the moduli of
space of abelian surfaces with a polarization of degree prime-to-p and Iwahori level. More

precisely, it identifies Xp—ar 1 \ SS with an open subscheme of the union of the closure of
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the stratum denoted by X5 and X" in [62]. We compute that the closure of X"
corresponds on the local model to the ring quotient

F,lx,y,a,b,cl/(xzy, ax + by + abc) — F,[b, c]

given © = y = a = 0. The closure of th’o corresponds on the local model to the ring
quotient
Fplz,y,a,b,c]/(xy, ax + by + abc) — Fpla, c]
given x = b =0 and y — —ac. Both rings are quotients of
Fplx,y,a,b,cl/(xy, ax + by + abe,y + ac, z) ~ Fpla, b, (]

given by the respective equations a = 0 and b = 0. Finally, the open stratum corresponding
to X;il is given by a # 0 or b # 0.

O]

We define the scheme X 130 as the vanishing locus of Ha/(G) and the scheme nga(i’l as

the vanishing locus of Ha/(G').

Remark 6.4.1. — 1t is possible, using lemma 6.3.3.5, to check that the Siegel modular
form Ha'(G) vanishes at order 2 along the rank 0 locus. When p > 3, the modular form

Ha/(G) has a square root (a modular form of weight Z’QT_I) which vanishes at order 1.
When p = 2, it does not have a square root.

7. The T-operator

The goal of this section is to introduce and study the action of an Hecke operator T'
on the cohomology of automorphic vector bundles RI'(X, Q%)) and RT(X, Q") (- D))
with » > 2. The Hecke operator T is related to the classical Hecke operator T),; =
GSp4(Zy,)diag(1,p, p,p*)GSp4(Z,). The naive attempt to directly define 7,1 on the in-
tegral cohomology of vector bundles does not seem to work because we are unable to
properly define and study an integral moduli space associated with 7,1 : the cocharacter
t + diag(t?,t,t,1) is not minuscule. We proceed differently, making use of a factorization
in GL4(Q,) : diag(p?,p,p,1) = diag(p,p,p, 1) x diag(p,1,1,1). This suggests to replace
Tp,1 by a composition (denoted T") of two double cosets :

Gsp4(Zp)dlag(p’p7p7 1)GSpﬁL(Zp) * Gspi(Zp)dlag(p’ 1, ]-7 1)GSP4(ZP)
where GSp); is the paramodular group. The point is that each double coset
GSpy(Zp)diag(p, p,p, 1)GSP)(Zy) and  GSpj(Zy)diag(p, 1,1,1)GSpy(Zp)

has a clear moduli interpretation in terms of parahoric level structure.

It is instructive to compare T" and 7T), ;. At the level of double cosets, an elementary
computation reveals that 7 =T, 1 + (1 + p + p? + p*)Tp 0 where T, 9 = pGSp4(Zy) ®),

Assume that 7, is a spherical irreducible smooth representation of GSp,(Q,) which
contributes to the cohomology RI'(X, Q1)) @l Q, or RI'(X, k") (-D)) oF Q, . Let
O, be the corresponding character of the spherical Hecke algebra (valued in @p). Let us
denote by (o, By, Vp, 6p) the Hecke parameters of m, which are the roots of the reciprocal
Hecke polynomial evaluated at O,, ordered to have non-decreasing p-adic valuation and

8. The double coset T' parametrizes chains G — G/Hy — (G/H1)/H> where Hy C G[p] is an order p®
group and Ho C (G/H,)[p] is an order p group contained in the kernel of the polarization of G/H;. The
component T}, 1 of T' corresponds to any choice of H; and the choice of Hy # G[p]/H:. The component T}, o
of T corresponds to any choice of H; and the choice of Hy = G[p]/Hi. It has multiplicity p* +p> +p+1 =

#GSp, (Zp)/Kli(p)-
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such that a,6, = B,7,. The Newton polygon associated to the Hecke parameters is (at
least conjecturally, see remark 5.3.2) above the Hodge polygon with slopes 0,7 — 2,k +r —
1, k4 2r — 3, with the same initial and ending point. We assume that this inequality holds
in the following discussion. By definition of the Hecke polynomial (see lemma 5.1.5.1), we
find that O, (T,1) = p~* (apBp+apYp+apdp+Bpdp+1pdp) —p >apdy, and that O, (Tp0) =
p3ayd,. The Hecke operator T' that we use acts like p>~"(Tp1 + (1 + p + p* + p*)Tp0)
(the normalization factor by p3~" optimizes integrality) and we find that:

®7rp (T) = p2_r(ap/8p + apyp + ap(sp + Bp(sp + Vpép) =+ pl_r(l +p+ p2)O‘p5p'

In this work, we mainly focus on the case that r = 2, and we observe that in this case,
the expression O, (T') is p-integral for all £ > 0. Moreover, we find that 7" and pT),; are
congruent modulo p for £ > 2. Recall that our goal is to construct ordinary families when
r = 2 and k varies. The Hecke parameter (ay, 8p,p,0p) is called ordinary if the Newton
and Hodge polygon agree. This condition translates into (when r = 2) : «,/3, is a p-adic
unit. We see that when & > 1, it further translates into : ©, (T) is a p-adic unit.

7.1. Definition of the T-operator. — Consider the schemes X, Xgi;(p) and Xpar
for choices of good polyhedral decompositions X, ¥’ and X" (see section 6.1). We also
assume that 3’ refines both ¥ and X”. As a result we have maps p; : Xgy;(p) = X and
P2+ Xki1i(p) = Xpar- We recall that G denotes the semi-abelian scheme over X and G’ the
semi-abelian scheme over Xpar. Over Xy (p) we have the chain of isogenies G — G’ — G
where the first isogeny G — G’ has degree p3, the second isogeny G’ — G has degree p
and the composite is multiplication by p. The map p; forgets G’, the map py forgets G.
By theorem 6.1.5.1, the schemes X, Xgy;(p) and Xy, are normal and Ici over Spec Z,.
Their non-smooth locus is included in the non-ordinary locus of the special fiber. As a
result, it is of codimension 2.

We will apply the formalism developed in section 4 to construct cohomological corre-
spondences. We note that the morphisms p; and po are not finite flat, because they are not
quasi-finite over the rank 0 loci X7 and X;g (). This is a consequence of the fact that
p-rank 0 abelian sufaces may have infinitely many subgroups of order p. This explains
why we will need advanced results on coherent duality to construct the cohomological
correspondences.

Let (k,7) € Z%,. The differential of the isogeny G' — G’ provides a map ng(’”) —
prQ*r) . Moreover, we have by construction 1 (see section 4.2.1), a fundamental class
piOx — p!1 Ox and p!1 Ox is an invertible sheaf. We thus obtain by tensor product with
Q*r) and proposition 4.1.2.1 a map p’fQ(k’T) — paQ(kﬂ"). Finally, if we compose with the
map pgﬁ(k”") — p’l‘ﬂ(’“”"), we obtain a cohomological correspondence

1! : psQer) o prlen) s ploler)
that we need to normalize.
Lemma 7.1.1. — The map T} factors through pz”p!lﬂ(k””) ifk+2r>2+r.

Proof. It is enough to prove the divisibility over the complement of the non-ordinary
locus. This is sufficient because X ;(p) is normal and the closed subscheme “non-ordinary
locus” is of codimension 2. We are thus left to prove the divisibility over the localization
of Xk;(p) at each generic point of the ordinary locus. There are two types of components
in the ordinary locus. We first consider the components where G — G’ has kernel a group
of étale rank two. Over these components, the map piw” — pjw” factors through p"pjw”

9. The maps p1 and p2 are also not finite flat over the boundary, but this is not a serious issue.
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because the multiplicative rank of the kernel of the isogeny G — G’ is exactly 1. As a result,
the map pgﬁ(k”) — p{Q(k’T) factors through p”p{Q(’”). On the other hand, we claim that
the map p{Q(k’T) — p’lﬂ(k”") factors through p2pllﬂ(k”‘). Let k be an algebraically closed
field of characteristic p and x : Spec & — X be an ordinary point corresponding to an
abelian scheme G. Let T be the Tate module of G. We fix an isomorphism 7" ~ Z[Q,. The

formal deformation space of this point is Hom(Sym?T, @;) by Serre-Tate theory ([39]).
This space has underlying ring W (k)[[X, Y, Z]] where the Serre-Tate parameter is the map
)Z( 1Z/ . The components of the fiber of
this deformation space under p; where G — G’ has kernel a group of étale rank two are a
disjoint union (parametrized by ker(G — G’) N G[p]™) of spaces with associated rings
WERI(X,Y,Z, XY ZN/((Q1+X)P-1-X,(1+2Z2VY-1-2Z2Y' -Y),

which parametrize the following diagram of Serre-Tate parameters :

X z
Z Y _
729G

ZZ — Z}% ® (/}; given by the symmetric matrix

ZZ 2
D m
Gl @y )
p ) Z/ Y/ ) N p
72 22 ® G,

The trace
WE)X,Y,Z,X" Y ZN/(1+ XV -1-X,1+Z)VY-1-2,Y'-Y) - W(k)[X,Y, Z]]

factors through p?W (k)[[X,Y, Z]] which implies that the map p{@x — p)Ox factors
through p2p!1 Cx.

On the components where G — G’ has kernel a group of p-rank two, the map
p’Q*Q(k”") — p’fQ(k”") factors through p(kH’”)p’{Q(k”") and the map p’{Q(k’T) — p!l(l(’”) is
an isomorphism. ]

Under the assumption k + 2r > 2 + r (which holds if » > 2), we denote by T} =
p 2T p’z‘Q(k”) — paQ(k”") the normalized map or the map on cohomology :

Ty : RT(Xpar, QF7)) = RO(X, Q87
We now define a second cohomological correspondence in the other direction (we
exchange the roles of p; and p2). We have maps :

Ty - pr Q) - paker) 5 pholen)
where the first map arises from the differential of the isogeny G’ — G and the second map
from the fundamental class.

Lemma 7.1.2. — The map Ty factors through ppIQQ(k””) ifr>1.

Proof. We compute over the localization at generic points in the ordinary locus as in
the proof of lemma 7.1.1. There are two types of generic points : the points where the
kernel of G’ — G is an étale group scheme and the points where the kernel of G — G
is a multiplicative group scheme. Over the “étale” points, the map p{Q(k”) — pgfl(’”) is
an isomorphism and we claim that the map pEQ(k”’) — p!QQ(’”) factors through ppIQQ(k”").
This can be checked in the complete local ring, using Serre-Tate parameters. Namely,
let k& be an algebraically closed field of characteristic p and = : Spec k& — X, be an
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ordinary point corresponding to an abelian scheme G’. The formal deformation space

at x has underlying ring isomorphic to W (k)[[X,Y, Z]] and parametrizes the Serre-Tate

X pZ

Z Y

of this deformation space under py where G’ — G is étale has associated ring
WEIX, Y, Z Y] /(1+Y) —1-Y)

which parametrizes the following diagram of Serre-Tate parameters :

parameter: Zg — ZZQ) ® @; given by the matrix ) The components of the fiber

X pZ
) Z Y g
Zp Zp ® G
10 10
(0 p) l X Z/ l (0 1)
) Z Y g
Zp Zp ® G,

The trace
WERIX Y, Z Y /(L+Y) =1 -Y) = W(k)[X,Y, Z]
factors through pW (k)[[X,Y, Z]] which implies that the map p30x,,. — p}Ox,,, factors

par
through pp!Q 0, at these points.
At the points where the kernel of G’ — G is a multiplicative group scheme, the
map p{Q(k”’) — pgﬁ(k”') factors through prpgﬁ(k”“) and the map pgﬂ(k”“) — pIQQ(k”“) is an

isomorphism. ]

Under the assumption 7 > 1, we denote by 75 the associated normalized map p~ 177 :
p{Q(k’T) — p!QQ(k”’) or the map on cohomology :

Ty : RO(X, QE1) 5 RT(Xpar, QF7).

We let T' = T} o Ty. The operator T' corresponds to the (normalized) operator
attached to the composition of Hecke operators GSp,(Z,)diag(p,p,p,1)GSp)(Z,) *
GSp)y(Z,)diag(p,1,1,1)GSp4(Z,) as explained in the beginning of this section.

7.2. Independence on the choice of the toroidal compactification. — We justify
that the action of our Hecke operators 77 and 75 does not depend on special choices of
polyhedral cone decompositions. We assume that » > 1 and k + 2r > r + 2 throughout
this section. Suppose we have a commutative diagram for choices X, %', ¥ and A, A’, A”
of good polyhedral cone decompositions :

lz ll
Xpar A <— Xg1i(p)ar — Xa

.
Xpar 5 < Xgii(p)sy > X
By theorem 6.1.5.1, we have isomorphisms :
t*: RI['(Xy, Q1)) - RI(X,, k7)),
. RO (X parsr, Q) = RT(Xpar an, 77 QE7),
s*: RD(X g (p)r, Q%)) = RO(X i (p) ar, s7QF),

where in this last isomorphisms Q%) stands for either p’fQ(’”) or p’éQ(k”").
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Proposition 7.2.1. — The diagrams :

T
RI(Xpar o, QF)) 225 RT (X, Q)

T*T t*T
T
R (X par s, Q7)) 2 RI(Xy, Q)

and

T:
RI(Xp, Q7)) —22 R (X pr arr, Q7))

t*T T,*T
T
RF(XE? Q(kﬂn)) £ RF(Xpar,E”a Q(k’r))

are commutative.

Proof. We only prove the commutativity of the first diagram. The commutativity of the

second diagram follows along similar lines. The bottom horizontal map is induced by the

cohomological correspondence T x : pJQQ(’”) — pllQ(k””) which by adjunction is a map :

R(pl)*pgﬁ(k”’) — Q1) Since Rs*s*pgﬁ(kvr) ~ pgﬂ(k’”, this map is equivalently a map :
T{ 5 : R(p1)«Rs,s*p3Q*") = Rt, R(1y)r*Q*r) — k),

We can obtain another map. We have a second cohomological correspondence

Tip - R(ll)*lgr*Q(k"’) — t*Qkr) Using the adjunction property and the isomorphism
Rt t*Q*1) ~ Q") we obtain a map that we denote by

T{ s : R R(1)L5r Q) — o),

The commutativity of the diagram is equivalent to the equality T1/72 = T1’7 A- By adjunction,

both can be seen as maps of locally free shaves I5r*Q*™) — 11 Q%) Both maps coincide
over the complement of the boundary. Thus, they coincide everywhere. O

7.3. The operator on cuspidal cohomology. — The boundary of the toroidal com-
pactification X, Xpar or Xgi(p) is denoted by Dx, Dx,,, or D Xxu(p)- 1f no confusion will
arise, it is simply denoted by D.

Lemma 7.3.1. — 1. If k+2r > r+ 2, the cohomological correspondences T :
pgﬁ(k”’) — p!lQ(k’T) induces a cohomological correspondence T : pgﬂ(k’r)(—DXpar) —
pi QN (—Dx).

2. If r > 1, the cohomological correspondences Ts : p{Q(k’r) — p!QQ(’”) induces a
cohomological correspondence Ty : piQF7) (=Dx) — pIZQ(k’T)(—DXpar).
3. These cohomological correspondences are functorial with respect to the change of

polyhedral cone decomposition, in the sense that the analogue of proposition 7.2.1
holds for cuspidal automorphic sheaves.

Proof. We only prove point 1 because point 2 is similar and point 3 is proved exactly in the
same way as is proposition 7.2.1. We have a map p’ﬁQ(’“”)(—DXpar) — p’Q*Q(k”")(—DXK“(p)).
Twisting the map p’ﬁQ(k”’) — p’{Q(kﬂ") we get a map p§Q(k”’) (=Dxyei(p) = p’{Q(kﬂ") (=Dx ()
By lemma 4.2.4.1, the fundamental class induces a map Ox,, ) (—Dx,.m) —
p!1 Ox(—Dx). Tensoring with Q%) and composing everything gives a non-normalized
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map p5QET) (— Dx,.) — pi QW) (—Dx). This map factors through p"*2pi Q%) N
p!IQ(k,r)(_D ) r+2 'Q(k r)(—Dx). O

7.4. Restriction of the correspondence. — In this section, we work over Spec IF).
Let p1 : Xki1i(p)1 — X1 and p2 : Xkii(p)1 — Xpar,1 be the reduction modulo p of the maps
p1 and ps. We keep the notation p; and po for the two projections. We will also make use
of the following notation : if we have a scheme S, a locally closed subscheme ¢ : T" < S,
and a coherent sheaf F on S, we often write F|r for i*F.

We have (by reduction modulo p and proposition 4.1.2.1), two normalized cohomo-
logical correspondences 77 : pg(Q(k”prar’l) — py(QF)|x) and T : pH(QE|x,) —
ph(Q*) [y ). Again, we keep the notations 77, T for the reduction of the cohomological
correspondences. We deduce maps on cohomology Ty € Hom(RT'(Xpar.1, 2F7), R (X7, QF1))
and Ty € Hom(RT(X1, Q%) RT(Xpar.1, QF7))). We keep writting T' = T} o Tb.

7.4.1. Restriction to the non-ordinary locus. — We now study the restriction of the cor-
respondence to the non-ordinary locus.

Proposition 7.4.1.1. — Forr > 2 and k +r > 2, the following diagrams commute :

Pk _n Ptk

lpg Ha ip{ Ha

psQUr+e=1) Ttk (p-1)

pratn) Tl qUen)

\L THa inga

Pl e-0) Tt ki (p-1))

Proof. It is enough to prove the commutativity over some dense open subscheme since
Xkii(p)1 is Cohen-Macaulay. We can thus work over the intersection of the ordinary locus
and the complement of the boundary. We consider the first diagram. There are two types
of ordinary components. First, the components where the kernel of the isogeny G — G’ is
of étale rank 2. Over these components, the diagram can be rewritten as the composition
of two diagrams :

pgg(kﬂﬂ) - pYQ(k’T) - pllg(k,r)

ipg Ha lp{ Ha lp{Ha

pgg(kvr“i’(p*l)) _ p’{Q(kvr‘i'(p*l)) _ pllﬂ(krr‘i'(p*l))

The map p’gﬁ(kﬂ") — p’fQ(k”") is obtained as the tensor product of the natural map
ng(k’O) — p’l‘Q(k’O) and a normalized map p’Q*Q(O””) — p’fQ(O””). By lemma 6.3.4.1 (observe
that the normalization used in that lemma is the same as the normalization used in the
definition of the cohomological correspondence), the left square is commutative. The right
square diagram is obtained by tensoring a normalized fundamental class p}Ox, — p|Ox,

“H
with the morphism Q%) P Qkr+(-1) and is obviously commutative. We next deal
with the components where the kernel of the isogeny G — G’ is of étale rank 1 and thus of
multiplicative rank 2. Going back to the definition (see lemma 7.1.1), we deduce that the
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map p5QET) — pt Q) vanishes as soon as k+2r > r+2. As a result, the commutativity
is obvious on these components.

We now deal with the commutativity of the second diagram. First, we consider the
components where the isogeny G’ — G has étale kernel. On those components, we can
again split the diagram as

pva(k,r) k,r)

ip’{ Ha lpg Ha lnga

p’fQ(kvr“F(p*l)) _ pEQ(kvr‘i'(p*l)) _ pIQQ(kzr‘i’(p*l))

prakn) il

The left square is commutative because the Hasse invariant commutes with étale iso-
genies. The right square is commutative because it is obtained by tensoring the normalized
fundamental class p50yx, — p,)Ox, with the morphism Q*7) — Q(kr+(=1)),

Finally, we consider components where the kernel of the map G’ — G is multiplicative.
Then, as soon as r > 1, the map p{Q(k”") — p!QQ(k”") vanishes and commutativity is obvious.

O

We recall that ngail and X 151 are the vanishing locus of the Hasse invariant in Xpar 1
and X7.
Lemma 7.4.1.1. — The sections psHa and piHa are not zero divisors in X g;(p)1.

Proof. The scheme Xy;(p)1 is Cohen-Macaulay and the non-ordinary locus has codi-
mension 1. O

By proposition 7.4.1.1 and proposition 4.1.2.1, for all » > 2+p—1 and k+r > 24+p—1,
we have cohomological correspondences :

Ty 30| ) = pl(OE)] o)

ngalr,l
and
15 : pT(Q(kﬂn) |X1§1) — p!Q(Q(k’T)‘ngal )

r,1

They induce a map 77 € Hom(RI( pgai’l,Q(k”)),RF(Xlgl,Q(k”))) and a map Th €

Hom(RF(Xlgl, Q) RI( pgail, Q®1)Y)). We let T = T1 o To. We obtain maps of exact

triangles for all » > 2 and k+7 > 2 :

R(p1)«p5Q2kr) Qler)
psHa pyHa

R(pl)*pgg(k,ﬂr(p—l)) . lkrt(-1)

R(p)«(p2)QUrt@e=1)| o — Qhr+=1)|
1

par,1

+1 +1

and
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R(pa).piFn) Q)
p1Ha p3Ha

QU+ -1))

R(pz)piQkrt®=1)

R(pg)*(pl)*Q(va+(p—l)) |X§1 . Q(k,r—i—(p—l))

1 |yt

piar,I
+1 +1

For r > 2 and k +r > 2, we deduce that there is a long exact sequence on which T'
acts equivariantly:

H* (X, Q) B2 e xy @bt (-0)y o g (x S bt e-1))

7.4.2. Restriction to the rank zero locus. — Forr >2+4+p—1landk+7r>2+p—1, we
have cohomological correspondences :

T g0z =0 s, and Ty i@ = 00

We are going to decompose these correspondences into pieces.

Lemma 7.4.2.1. — Let N € Z>1 and let S be a scheme of characteristic p and G be
a truncated Barsotti-Tate group of level N over S. Assume that the étale rank and the
multiplicative rank of G is constant over S. Let H C G be a subgroup scheme of order p.
Then S is the union of three types of open and closed subschemes S = S T[ S™ ][] S°° such
that over each geometric point of S¢, S™ and S°°, the group H is respectively isomorphic

to Z/pZ7 Hp, Qp-

Proof. We can assume that S is perfect because a scheme and its perfection have the
same underlying topological space and the same geometric points. We have a decomposi-
tion: G = G™ ® G°° & G into multiplicative, biconnected and étale groups because the
usual multiplicative-connected-étale filtration splits over a perfect scheme (one can use the
Verschiebung on G and G* to produce the splitting, see [59], prop. 1.3 for example). The
condition that H is of étale, multiplicative or biconnected type is then obviously closed.
The condition that H is étale or multiplicative is open. Thus we have open and closed
components S and S™. Their complement is S. O

We will now make use of the following notation : if we have a map of schemes S — T
and Z < T a locally closed subscheme, we will often write S|z for S xp Z.

Using this lemma we can decompose certain schemes. Consider the chain of isogenies
G — G — G over Xgi(p).

Lemma 7.4.2.2. — The scheme Xgii(p)|x=1 . 1s the disjoint union of three open and
par,
closed subschemes. The étale component (X (p)|x=1 1)et where the isogeny G' — G
par,
has multiplicative kernel, the multiplicative component (X (p)|x=1 1)m where the isogeny
par,
)OO

G' — G is étale and the bi-infinitesimal component (X (p)|x=1 ) where the isogeny
par,

G' — G has bi-connected kernel.
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Proof. We first establish the decomposition on Y (p)|x=1 g the locus where G is an
par

abelian scheme. We can consider the universal order p subgroﬁp H of G[p| and apply the
above lemma. This decomposition extends to X (p)|x=1 ) by the description of the local
par,

charts. O

We deduce that the scheme Xyq;(p)[x=1 (which has the same topological space
as Xgui(p)|x=1 ) is also the union of three types of components : (XKli(p)’Xfl)et,
par

(Xk1i(p)| x=1)™ and (X gi(p)| x=1).

Lemma 7.4.2.3. — The scheme X..- is the union of two types of components. The

par,

components X;aiﬁo where the kernel of the quasi-polarization G'[p™] — (G')![p™] is iso-

morphic to a biconnected group and the components X;alr’?_et where the kernel of the
polarization contains a multiplicative group.

Proof. Over X;iﬁo we consider K (\) the kernel of the quasi-polarization G'[p>] —
(G")[p™]. If G’ is an abelian scheme, this group is either a connected BT} of height 2 and
dimension 1 or an extension of an étale by a multiplicative group. We consider the group
KerF : K(\) — K(\)®). This is a rank p group either of multiplicative type or locally
isomorphic to ay,. We can apply lemma 7.4.2.1. O

Lemma 7.4.2.4. — We have :
p2(Xrui(p)l x=1 )*) © Xport?

and
Po(Xti(p) x=1 )™ U (it @)l x=1 ) € Xt

par,1
Proof. The group Ker(G' — Q) is a closed subgroup of K (A) and therefore it determines
its type : it is étale or multiplicative if K () contains a mutliplicative group, and it is
biconnected if K (\) is. O

The cohomological correspondence Tj : p5Q*:7)| Xz, p k)| x=1 is naturally the

sum 17" + T¢' + T of three cohomological correspondences where we denote by 77",
T¢t and T the projection of the cohomological correspondence T respectively on the
multiplicative, étale and bi-infinitesimal components.

Similarly, the cohomological correspondence Ty : piQF7)| x=1 = ph k)| Xz, de-

composes into Th = T4 + T5' + T$°, where we denote by 73", T§' and T5° the projection
of the cohomological correspondence T5 respectively on the étale, multiplicative and bi-
infinitesimal components (note that the roles of étale and multiplicative components are
switched between 77 and T5).

We have maps on cohomology :

H*(XIZI, Q(k,’l") (—D)) (Té)o’%TQet)

oo et m
H*(X:LOO Q(k,r) (—D))@H*(X:Lm_et, Q(kﬂ") (—D)) (T1 7Tl_->i-T1 )

par,1 par,1

H* (X7, Q"0 (—D)).

The first important result of this section is :

Proposition 7.4.2.1. — Forr >2+(p—1) and k+r > 2(p+1), the following diagrams
are commutative :
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T

k)| o ————pl Q| o
par,1 1
\Lnga’ lp’l‘Ha’
T 2
*Q(k,r+(p2—1)) < 1 LQkr+(*-1))
p2 |X];ar1 p ‘Xf
Tet
*()(k,r 2 k,r)
P1Q( )|X1:1 P K ’Xpalrl
lp’IHa’ inga’
et
QU7 -1)| B k(2 -1) |
p]‘ Xfl p2 Xpalr 1

Moreover, T{" =T7° = 0 and T5" = 0. Finally, if r > p+2, T9° = 0 and the diagram:

() (k) B ' kr)
VS |X1§1 V%) |X§a1r,1
lp’l‘Ha’ \Lnga’
T:
PG|y T Q0P|

pjar,l

15 commutative.

Proof. We first deal with the operator 77;. We notice that it is enough to prove
the claim over Xgy;(p)| Xz which is dense in the support of the Cohen-Macaulay sheaf

p!IQ(k7T+(p2_1)) \Xlgl. We will actually work over the interior of the moduli space Y (p)| x =1

which is dense. We can treat separately the different connected components. We first deal

with the components of étale type. We take some simplifying notations. Let A = pail

and A be the completion of Y,y 1 along this locally closed subscheme. Let B = Yl and

B be the completion of Y7 along B. The ideal of definition of A and B are (p Ha.w(-P)).

Finally, consider C', the completion of Xx;(p) along (X kii(p)|y=1 )et (py 1 (A))¥ (or the
par,1

completion along (p;*(B))%, it makes no difference). We consider the following restriction
of the correspondence (we keep using the same notations for the projections):

C
N
A B

We observe that the map p; is finite flat because B is regular, p; is finite (because
we removed the p-rank 0 locus) and dominant, and C is Cohen-Macaulay.

We are now going to give a description Of the cohomological correspondence 11 re-
stricted to C'19). Consider the following commutative diagram over C :

10. Since the map p; is finite flat away from the p-rank 0 locus and the boundary, it makes sense to
base change the cohomological correspondence to an arbitrary (formal) scheme by section 4.2.5. Also,
the reader who wishes to avoid using formal schemes could replace c by some open dense affine formal
subscheme Spf V' and then replace Spf V' by Spec V.
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Glp>]™ Glp™] Glp>]/Gp>™]™

L |

The middle vertical map is the universal isogeny. The exponent m means the multi-
plicative part of the BT. The left vertical map is an isomorphism and the right vertical
map is multiplication by p composed with an isomorphism. The non-normalized map
piw — piw can be normalized by p~! to give an isomorphism. The non-normalized map
pEQ(’”) — p{Q(’“’) can be normalized by p~". Under the isomorphism pgw(p_l) ~ p{w(p_l)
we have pyHa = p5Ha by lemma 6.3.4.2 (applied on the formal scheme C which we view
as the inductive limit of the schemes defined by the zero locus of increasing powers of
the ideal of definition (p, ptHa.piw(!=P))). We now define C' = V(p, pfHa.piw! ?) < C
(we could have used instead p5Ha.pjw' ?). The fundamental class pj@ — PO 5 is di-
visible by p? as we can check over the ordinary locus as in lemma 7.1.1. We can thus
write the cohomological correspondence 17 over C as the composition of a normalized
map ng(k’T) o= p’fQ(k’T) ¢ and the map which is the tensor product with p’{Q(k”") of a
normalized fundamental class. We are using here 4.2.5 to check the compatibility of the
fundamental class with base change via the morphism B — X.

After this analysis, we can prove the commutativity of the diagram of the proposition
over C. We can write the diagram as the composition of two diagrams

p3Q#Fn) | ) ————— pi Q) g ————— pi Ok

lnga’ lp{Ha’ lp’l‘Ha’

pgﬂ(krr“i’(pzfl)) ’A PR p’{Q(kﬂ"i'(pQ*l)) ‘B R pllQ(va‘i'(pQ*l)) ’B

The commutativity of the left square follows from lemma 6.3.4.2 and the commuta-
tivity of the right square is obvious.

We now deal with the components of Xgy;(p)| Xz, of multiplicative and bi-
infinitesimal type. We have denoted by 77° and 17" the restriction of the cohomological
correspondence to bi-infinitesimal and multiplicative components. Over these compo-
nents, we will actually prove that the cohomological correspondences 77° and 17" are
zero. The commutativity is thus obvious.

Let Spec I — X7! be a point corresponding to a p-rank 1 principally polarized
abelian surface A over an algebraically closed field [ of characteristic p. Consider the lift
A — Spec W (I) with associated Barsotti-Tate group jiye ® E[p™®] ® Q,/Z, with E[p>]
the Barsotti-Tate group of a supersingular elliptic curve over W (). Consider the following
commutative diagram :

TOO
HO(X ki (p) X x.py Spec. W (1), p3Q*7)) — H(Spec W (1), 2(-7))

| |

HO(XKli(p)l XX, p1 Spec l,p§Q<k7’")) ! HO(Spec l, Q(k”))
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All vertical maps are surjective because all schemes are affine. Let f € HO(X g (p) X x p,
Spec W (1), p5Q*)). Then by definition and section 4.2.5,

T F(A 1) = 3 FA/L )

LCA[p], Ltbiconnected

In this formula, p : W(l)? ~ e*Q}Z1 is an isomorphism. Let C be the completion of an
algebraic closure of W(1)[1/p]. Then

-1
Wt Beotec el ec
where £ : A — fl/ L is the isogeny. We have a non-canonical decomposition over Oc¢:
L = L™ @ L°® L where each of these groups is multiplicative/bi-connected/étale of
1

order p. Moreover, it is easy to see that LY has degree 17 in the sense of [20] (see [62],

example A.2.2). As a result, the map : e*Qii L — G*Qii has elementary divisors (p, w)
1

with the p-adic valuation of @ (normalized by v(p) = 1) equal to +5. If r +k > 2(p + 1)
then I%f(;l/L,,u’) € mp, and as a result, Tf"f(fl,,u) mod p = 0. The proof of the
vanishing of 77" is similar (actually one sees that 77" is zero as soon as k + 2r > r + 2 as
in the proof of proposition 7.4.1.1.

The commutativity of the second diagram follows easily from the observation that the
isogeny G’ — @ is étale. The proof of the vanishing of 73" or T5° (if » > p + 2) is similar
to the proof of the vanishing of 7T7°. The commutativity of the last diagram follows.

O

Remark 7.4.2.1. — 1. For r = p 4+ 1, one can prove that the correspondence 75°
does not commute with Ha' and does not vanish and therefore the operator Th
does not commute with Ha'.

2. Our vanishing condition for 77° is not optimal because we have not used estimates
on the fundamental class. It will nevertheless be sufficient for our purpose.

Corollary 7.4.2.1. — We have T = Ty o Ty = T o TS' as endomorphisms of
H*(XTH w®)) when r >p+1 and k41 > 2(p+ 1).

Proof. This follows from the vanishing 77" = T7° = 15" = 0. O

Lemma 7.4.2.5. — The section ptHa' is not a zero divisor in Xg;(p)1 X x, fl
Proof. The scheme Xgi;(p)1 Xx, XlSl is Cohen-Macaulay and the p-rank 0 locus has
codimension 1 (1), ]

By proposition 7.4.2.1 and proposition 4.1.2.1, we have for r > p?+p = 24+p—1+p>—1
and k +7 > 2(p + 1) + p? — 1 a cohomological correspondence :

T ngg(k’mx;(;l - paQ(k’T)|Xl=0-

Moreover, we have for all r > 2+p—1and k+r > 2(p+ 1) + p? — 1 a commutative
diagram of long exact sequences :

11. The p-rank 0 locus X7 is of dimension 1 and the map p; is bijective over the dense open subscheme
of X7° parametrizing abelian surfaces which are not isomorphic to a product of supersingular elliptic
curves. On the other hand, the map p; is a P!-fibration over the finite set of superspecial points SS of
X7 parametrizing abelian surfaces isomorphic to a product of supersingular elliptic curves.
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H* (X1, k) _ Ha' H* (X Qkr+*=1))) H* (X0, Qr+@*-1)))

o] o] o]

H*(ngalr,h Q(k’r)) ﬂ; H*(Xp%alr,lﬁ Q(k7r+(p2_1))) - H*(nga(;,lv Q(k’r+(p2_l))) -

The following proposition is absolutely crucial to the argument of the paper.

Proposition 7.4.2.2. — There is a constant C' which does not depend on the prime-to-p
level KP such that for all k > C and all ¥ > p? + p, the cohomological correspondence
Ty = psQ*m) | —o L= pllﬂ(k””)]Xlzo is zero.

par,

Proof. Let Z C Oy be the ideal of the closed subscheme X7 . In a local trivialization
of the sheaf w, the ideal is generated by p and lifts of Ha and Ha'. Since X0 is a
local complete intersection in X, we deduce that & X0 has finite tor dimension as an
Ox-module.

The cohomological correspondence T : pgﬁ(k”) — p!l(l(k’r) induces a cohomological
correspondence

P52 o ph () @ 6y o)
thanks to proposition 4.1.2.1. Moreover, thanks to proposition 7.4.2.1, this cohomolog-
ical correspondence factors through the map Ty : p5QF7)| x=0 = pQFT)]| X0 of the
proposition. Thus, in order to prove the proposition it is engugh to show that there is
a constant C such that for all k& > C, the map T} : p’Q*QU”) — p!l(l(’”) factors through
T :pgﬁ(k”) — Ip!lQ(]”).

We now need to analyze one more time the construction of T7. Let ¥ : G — G’ be
the universal isogeny. Its differential is a map d¥ : p5Q! — piQl. Call Wy p’z*Q(k”") —
p{Q(k’T) the map obtained by applying the functor Sym”* ® det”. The determinant Yo 1
psw! — piw! factors through ppiw! (check this over the tube of the ordinary locus).

Secondly, we have a non-normalized fundamental class © : p7Ox — p!1 O'x . Tensoring
with Q*7) gives a non-normalized map

O+ IO 5 Pk

We have established in lemma 7.1.1 that the composite O, o ¥y, .. is divisible by p>tr
when r > 1, and the cohomological correspondence T3 is p‘2_r®k7r oWy .
To prove the proposition, it is enough to show that there is a constant C such that

Ok 0 Upo, (p32H7)) € pHrIpi k)

for £ > C.

The problem is local. Let Spec A be an open in Xgy(p) and I = pj{Z(Spec A). Set
My = p5Q*(Spec A), Mz = prQ'(Spec A), My = p}Q'(Spec A).

Let p1,---,p, be the minimal prime ideals in Spec A/I. One sees that for each i,
d¥(Ms) C p;M3 as the differential d¥ : Q}, — QlG is 0 modulo p; because the isogeny
U : G — G factors through the Frobenius map at p; by lemma 7.4.2.6 below.

We deduce that

Ok © Wier(Ma) € p* "My [(Y(Nip"pi) M.
By Artin-Rees lemma, there exists C(A) > 0 such that p2Aﬂﬂipic(A) C p?I. Tt follows
that for all k > C(A), Ok, 0 ¥y .(Ms) C p*"IMj. Since X gy;(p) is quasi-compact, it can
be covered by finitely many affines as above.
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We finally justify that the constant C' does not depend on K?. Say we have K} C K%
two open compact subgroups of GSpy(A’;) and we denote by K1 = K7GSpy(Z,) and K» =
K¥GSp,(Z,). Let Cy and Cs be constants that fulfill the conclusion of our proposition
for the levels K7 and Ky. We claim that the constant C' = inf{C}, C2} works as well for
both level. Indeed, there is a map Xg, — Xk, which correspond to the change of level
away from p and which is finite étale away from the boundary (and we have similar maps
for the other level structures at p). All our constructions at level K are obtained by base
change from level K5 (they clearly do not depend on the level structure away from p). In
particular the map of the lemma for the level K is obtained by base change from the same
map at level Ky under the map X gk, — Xkii(p)K, Which is finite étale away from the
boundary. The map of the lemma is supported on the p-rank 0 locus which does not meet
the boundary and therefore C' works at level K7 and Ko.

O

Lemma 7.4.2.6. — Let A — Spec | be an abelian surface of p-rank 0 over a field I of
characteristic p. Let L C Alp] be a group scheme of order p*. Then Ker F C L.

Proof. We have a perfect pairing A[p] x A[p]® — p,. The orthogonal of Ker F' C A[p] is
Ker ' C A[p]P. The group L+ C A[p]” is a group of rank p and is necessarily killed by F,
since A has p-rank 0. It follows that L+ C Ker (F : A[p]® — A[p]P) and that Ker F C L.
O

Remark 7.4.2.2. — Finding an explicit bound for the constant C' appearing in proposi-
tion 7.4.2.2 would be a first important step towards proving an integral classicity theorem
for all cohomological degrees improving on theorem 1.1, point 2. This would require new
ideas and a deeper analysis of the correspondence.

8. Finiteness of the ordinary cohomology

The purpose of this section is to study the T-ordinary part of the cohomology of
automorphic vector bundles over various subsets of the Shimura variety. The results of
section 7 provide the necessary background material.

8.1. Finiteness of the ordinary cohomology on X7 !. — We begin with the follow-
ing lemma.

Lemma 8.1.1. — For all v > 2+ (p — 1) and all k > p + 1, the action of T on
HO(XTL, QF7) (—D)) s locally finite.

Proof. We let Ha' € HO(Xlgl, wP*~1) be the second Hasse invariant. Since HO (X7 QW (—D)) =
colimnHO(Xlgl,Q(k’r+”(p2_l))(—D)) where the inductive limit is over multiplication by
Ha' and Ha'T = THa' by proposition 7.4.2.1 and corollary 7.4.2.1, the lemma follows. [J

Using the result of section 2.3, we can define an ordinary projector e associated to T’
on HO(X=1 Q*n)(—D)) for k> p+1,r>p+ 1.
Lemma 8.1.2. — 1.Ifr >2+(p—1) and k > p+ 1, we have an equality of
morphisms Ha'T = THa' : H(X =1, Q*7) (= D)) — HO(X =1 Qkr+(* =) (D)),

2. Ifr>2+(p—1) and k > p+ 1, we have an equality of morphisms Ha'T = THa' :
Hi( XS QF0)(—D)) — HI(XE, QEr+*=D) (D)) for all i.
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Proof. The first point follows from the fact that we have a T-equivariant embedding
HO(X =Y Qn)(—D)) «— HOY(XFL, QKr)(=D)) for r > 24 (p— 1) and k > p + 1 and
that the identity holds for the map HO(XT!, Q) (—D)) — HO(XTL, Qkr+@*=1)(— D))
by corollary 7.4.2.1. Point 2 follows from proposition 7.4.2.1. O

Remark 8.1.1. — We have not been able to establish that THa' = Ha'T as morphisms :
Hi(X=! QD) (—D)) — HI(X !, QkP* ) (— D)) for k large enough and i > 1, although

we believe this should be true. (12)

Proposition 8.1.1. — There is a constant C (see prop. 7.4.2.2) which is independent
of the level KP such that for k > C and r > p + 1 we have isomorphisms :

HOOE (D) = O, 00 (D))
If 1 > p+ 2, we moreover have eH (X', Q1) (=D)) = eH{(XT', Q*F7)(=D)) = 0
fori=1,2.

: . <1 <1
Proof. Consider the following exact sequence of sheaves over X" or X 4 :

0 s Q(k,r)(_D) N Q(/W“-i-(PQ—l))(_D) N Q(kvr‘*‘(pQ_l))(—D)/(Ha') —0

Applying the functor global sections, we get a commutative diagram of long exact
sequences :

(X7, Q) (- D)) — I e (X, @Ur 07 -0) (- D)) H (X, Qkr+ (0" -0)(—D)) ——

o] " "

H* (X351, 0k (D) (x5! Qtrt0* D) (- D)) — HX(X 50 |, Qr 0P D)(— D)) —

Ideally, we would like to apply the ordinary projectors for T and T5 o T} to the top
and bottom vertical lines of this diagram, but all the maps may not be equivariant by
lemma 8.1.2, so some care is necessary.

The map

T - H*(X:O Q(k,rJr(pzfl))(_D)) N H*(X1:O’ Q(k,r+(p271))(_D))

par,1>

is the zero map by proposition 7.4.2.2. If f € eH*(Xlgl,Q(k””r(pQ_l))(—D)), we deduce
that there exists f/ € H*(X=, Q%) (—D)) mapping to f. It follows from lemma 8.1.2
that on degree 0 cohomology we have THa' = Ha/T so that the injective map

HO(XF, Q) (= D)) — HO(XF!, tr " =D)(— D))
commutes with the projector e. We deduce that the map
eHO(X{, Q47 (=D)) — eH(X7, it =1) (- D))

is an isomorphism (it is obviously injective, and surjective because ef’ maps to f).
Passing to the limit over multiplication by (Ha')" we get that eHO(Xlgl,Q(k”)(—D)) =
eHO(XT1, Q) (—D)).

When r > p + 2, we can apply the ordinary projector associated to T =
Ty o Ty on H*(XFI,Q(]“’T)(—D)) and H*(Xlgl,Q(k’”(”Q_l))(—D)) and to Ty o Ty on

12. In some sense, we are paying here the price for our indirect definition of the operator T as a
composition of two operators.
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H*(ngail,ﬂ(k”)(—D)) and H*(ngail,Q(k”"Jr(pQ*l))(—D)), because all maps are equivari-

ant by lemma 8.1.2 point 2 (and a slight generalization of it for T5 o T instead of 7). The
map 77 is an isomorphism between the ordinary parts. On the other hand,

T - H*(X:() ” Q(k,rJr(pzfl))(_D)) N H*(X1:0’ Q(k,r+(p271))(_D))

pa’r’

is the zero map by proposition 7.4.2.2. It follows that
e (XT!, 0 (—D)) = el (X, Q0 0) (- p)).

Passing to the limit over multiplication by (Ha/)” we get that eH*(X=' Q*)(—D)) =
eH* (X7, Q¥ (—D)). Finally, for all r, the sheaf Q") (—D) is acyclic relatively to the
minimal compactification by thm 6.2.2.1. Moreover, the rank 1 locus X7 ! has affine image
in the minimal compactification. As a result HY(X!, Q") (—-D)) = 0 for i > 0.

O

Remark 8.1.2. — If we had been able to establish that THa' = Ha'T as morphisms
Hi (XS QRrtD) (— DY) — Hi(XS, Q*P*+9)(—D)) for all i, we would have deduce that
eHi (X =1 QkrtD)(— D)) = eH!(XT!, QP+ (= D)) for all 4.

8.2. Finiteness of the cohomology on Xlzl. — We now turn to understand the
cohomology of Xl21 =X\ X770

Lemma 8.2.1. — The action of T on RF(Xlzl, Qk1) (D)) is locally finite for k > p+1
and r > 2.

Proof. Consider the following resolution over X 121 of the sheaf Q%) (—D) :

0 — Q*(=D) = colimy, xga Q*FP~D(=D) — colim, Q*" =D (— D) /(Ha)" — 0.

All sheaves are acyclic relatively to the minimal compactification by thm 6.2.2.1.
Moreover, the support of colimmxHaQ(k’”(pQ_l)")(—D) is the rank 2 locus which is affine
in the minimal compactification. The support of colim, Q*m+®*~1n)(_D)/(Ha)" is the
rank 1 locus which is also affine in the minimal compactification. It follows that the above
sequence is an acyclic resolution of the sheaf Q") (—D) over Xlzl.

The cohomology RI'(X 121, Q1) (D)) is thus represented by the following complex :

HO(X2, Q%" (=D)) — colim, H(X !, Qkr+(P=Un)(_ D) /(Ha)™)
We will see that the action of T is locally finite on both terms. Since
HO(X72, Q%) (—D)) = colim, HO (X1, Qrne=1)(_ D))

where the transition maps are given by multiplication by Ha and T' commutes with mul-
tiplication by Ha by proposition 7.4.1.1, the action of T is locally finite on the first term.
We now prove that it is locally finite on the second term. It is enough to see that it is
locally finite on HO(XZ!, QUkr+(e—1n)(_D)/(Ha)"). For n = 1, this follows from lemma
8.1.1. For general n, we use induction, lemma 8.1.1, lemma 2.1.1 and the following exact
sequence :

0 — HO(X1217 Q(k,rJr(pfl)(nfl))(_D)/Hanfl) N }10(43(1217 Q(k,rJr(pfl)n)(_D)/Han)
— HO(xZ!, Qkr+p=bn)(_ D) /Ha).
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We can now prove the following proposition, which is one of the main technical results
of the paper :

Proposition 8.2.1. — Forallr > 2 andk > C (see prop 7.4.2.2), eRT(XZ', Q) (— D))
is a perfect complex of amplitude [0,1] of Fy-vector spaces.

For all 7 >3 and k > C, the map eRT'(X1, Q%) (—D)) — eRF(Xlzl,Q(k”)(—D)) is
a quasi-isomorphism.

For all k > C, eHY(XZ',Q®2(—D)) = eHY(X1,Q®2(=D)) and the map
eH' (X1, Q%2 (—D)) — eHl(Xlzl,Q(k’2>(—D)) is injective.

Proof. Since X is of codimension 2 in X7, and X; is smooth, we have unconditionally
HO(XZ! Qr)(—D)) = HO(Xy, Q%) (=D)) and in particular eHO(XZ, Q") (—D)) =
eHO (X1, Q1) (—-D)).

We consider the following exact sequence over X7 :

0— Q(k’r)(—D) — colimn7xHaQ(k’r+(p_1)n)(—D) — COlian(k’T+(p_1)n)(_D)/(Ha)n —0

From the above short exact sequence of sheaves we obtain the following long exact
sequences :

0 — HY(XF!,Q07)(=D)) — HY(X{™, Q0)(~ D)) —>

| |

0 —— H°(X1, @) (-D)) —— HO(X7™, Q") (- D)) ——

colimHO(X 2!, Qkr+n(p-1)(— D) /Ha")) — H (X', Q*7) (= D)) — 0

| |

colimHO (X, Qkr+n(p=1)(_ D) /Ha")) H' (X, Q%) (=D)) ——=0

and the isomorphisms : colimH?(X;, Qkr+7(P=1)(_D)/Ha")) ~ H*1 (X, Q1) (— D))
fori=1,2.

The first two vertical maps in the diagram are isomorphisms. We now check that
eH (X, Qertn(r=1)(—D)/Ha")) = 0 for all n > 1, k > C, 7 > 3 and i € {1,2}. The
case n = 1 follows from proposition 8.1.1. For the general case, we take the long exact
sequence of cohomology associated to the short exact sequence of sheaves :

0 —s Q(k r+n(p—1)) ( )/Han Ha Q(k r+(n+1)(p—1)) (_D)/Han+1 _>

QEr+(n+D@E=1)(_ D) /Ha — 0.

We now check that eHO( X, QU 2(=1)(— D) /Ha™)) — eHO(X 2, Qrtn(-1)(— D) /Ha™))
is bijective for all n > 1, £ > C and r > 3. We prove this by induction on n. The case
n = 1 follows from proposition 8.1.1. The general case follows by taking one more time
the long exact sequence of cohomology associated to the following short exact sequence of
sheaves (when r > 3, there is no eH! as we just checked) :

0 — Q(k r+n(p—1)) ( )/Han Ha Q(k r+(n+1)(p— 1))( )/Han—H N
QFr+(n+D)E=1)(_ D) /Ha — 0.
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We finally prove that eH' (X1, Q%2 (=D)) — eH'(XZ!, Q%2 (—D)) is an injection of
finite dimensional vector spaces when k > C. We use the long exact sequence associated
to

0 — Q®2(—p) B qkrtD)(_py - Qkr+)(—D)/Ha — 0
and the claim follows from the isomorphism
eH (X1, Q®PHD (D)) — eHY (X!, QPP+ (- D))
that we just established and the isomorphism of proposition 8.1.1 :
eHO (X QP (— D)) — eHO(XT, Q1) (—D)).
O

Remark 8.2.1. — If we had been able to establish the claims of remark 8.1.2, we
could improve the above proposition and show that for all » > 2 and k > C, the map
eRD(X1, Q%) (D)) — eRT(XZ, Q7 (=D)) is a quasi-isomorphism.

9. Families of sheaves

In this section we give the construction of certain p-adic sheaves, defined over the
p-rank at least one locus, which interpolate the classical automorphic sheaves in a one-
dimensional direction of the weight space.

9.1. Deep Klingen level structure and Igusa tower. — We introduce certain level
structure that will allow us to define p-adic sheaves.

9.1.1. Deep Klingen level structure. — We let X%llz(pm)n — X! be the moduli space
of subgroups H,, C G[p™] where H,, is étale locally isomorphic to p,m». We denote by

Xod(p™),, or X52(p™)n the ordinary locus of X]%llz(pm)n

Remark 9.1.1.1. — We have previously considered the space Xx;(p) (a toroidal com-
pactification of the Shimura variety with Klingen level at p, let us further assume in this
remark that the polyhedral cone decomposition is the same for X and Xy (p)). We warn
the reader that X[Zﬂll (p)1 is a strict open subscheme of X x;(p)1 X x, Xlzl. This is the open
subscheme where the universal subgroup H; (defined as the orthogonal of the kernel of
the degree p? isogeny G — G’, or as the kernel of G — (G")?) is a multiplicative subgroup
of order p.

Lemma 9.1.1.1. — The map Xlz(llz(pm)n — X}Z(lli(pm_l)n is étale and affine.

Proof. We first prove that the map is étale. It suffices to show that the map f :
Xlz{lll (p™)n — X2t is étale. We can prove this over the spectrum S of a completed local
ring in X!, Over S, there is a finite flat subgroup scheme G[p™] C G[p™] such that the
connected component of G[p™] is contained in G[p™] 13). Let g : T — X%ll(pm)n X 21 5.
Let T < T’ be an infinitesimal thickening of T. We suppose that h = f o gn ex-
tends to A/ : T — S and we want to prove that h’' can be lifted to a unique map
g :T — X%}i(pm)n X xz1 S such that f o g = h'. To the map g is associated a sur-
jective map 9 : GP [p"]|r — HE |7 over T where HE |7 is an étale group scheme, locally
isomorphic to Z/p™Z. The group scheme H | deforms uniquely to an étale group scheme

13. Away from the boundary, we can of course take G[p™] = G[p™]. At the boundary we find it easier
to work with a finite flat group scheme and we can replace G[p™] (which is only quasi-finite) by G[p™]
where G is the semi-abelian scheme with constant toric rank that occurs in Mumford’s construction (see
[18], chap. III).
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HP|7 over T" and the data of b/ provides a deformation G[p™]7 to T' of GP[p"]|z. By
Ilusie’s deformation theory ([37], thm VII, 4.2.5) | the map 7 admits a unique extension
Y GP™ |0 — Hy .

We are left to prove that the map is affine. It will be enough to prove this for
n = 1. Let us denote by Z — X%}i(pm*1)1 the Grassmannian of subgroups of order
p™ inside G[F™] (the kernel of F™ : G — G®™)). We note that G[F™] is a finite flat
group scheme. As a result Z is proper and moreover, it is easy to see that Z is quasi-
finite. As a result, Z is finite. We denote by C the universal subgroup. Let us denote
by Z' the closed subscheme of Z where C [pmfl} = H,,—1. The group scheme C/H,,_1
is connected of order p over Z’. Its co-normal sheaf is £, an invertible sheaf over Z’
and the differential of the Verschiebung map V : (C/H,,_1)® — C/H,,_; provides a
section s € HO(Z', £P~=1)). The non vanishing locus of this section is the open subscheme
(Z"™ of Z where C/H,,_1 is of multiplicative type. The map (Z)" — X%lli(pm_l)l
is affine as the composite of the affine open immersion (Z')™ < Z’ and the finite map
A ij(lll (p™~1)1. Finally, XlzalZ (p"™); is the open and closed subscheme of (Z')"™ where
C is locally for the étale topology isomorphic to j,». We have thus proved that the map
X[Z(lli(pm)l — X[Z(lli(pm’Ih is affine. O
Remark 9.1.1.2. — The map X[%lll (P™)n — X%llz (p™~1),, is not finite because it induces
an isomorphism over the p-rank 1 locus, and is of rank p (resp. p + 1) over the p-rank 2
locus if m > 2 (resp. if m = 1).

9.1.2. Igusa tower. — We let IG(p™), = Isom > &™) (ppm, Hyy,). This is a (Z/p™7Z)*-
K n

li
>1 . . . .
torsor over Xi,.(p™)n. There is an obvious commutative diagram :

>1 >1
Xl_az‘(pm)n—l — > X[_(li(pm)n
>1 _ >1 _
X" D1 —= Xy (0™
The horizontal maps are closed immersions and the vertical maps are étale and affine

maps.
Above the last diagram, there is a commutative diagram :

IG(p™)n—1 IG(P™)n

| |

IG(pm_l)nfl - IG(pm_l)n

9.2. Formal schemes. — In this section we pass to the limit over n, and we are thus
led to consider formal schemes. Let X — Spf Z, be the p-adic completion of X and we let
X2Z! < X be the open formal subscheme where the multiplicative rank of G is at least 1.

Let %i}z(pm) — X be the moduli of H,,, — G[p™] where H,, is locally for the étale
topology isomorphic to pym. The map %%l(pm) — X is étale and affine (but not finite
). We let %]Z(}Z(poo) be the formal scheme equal to the inverse limit of f{%z(pm) as m
varies. It exists because the transition maps are affine. Let Ho, < G[p™] be the universal
multiplicative Barsotti-Tate group. Above X7.;.(p™), we set J&(p™) = Tsom(uym, Hyy,).
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This is a (Z/p™Z)*-torsor. Above %%i(poo), we set J&(p™) = Isom(ppeo, Hs). This is a
Zy, ~torsor.

9.3. p-adic sheaves. — We now define sheaves of p-adic modular forms. Let 7 :
JI&(p>) — %%Z(p) be the projection. Let A = Z,[[Z,]] and & : Z); — A* is the universal
character. We can define the sheaf §* = (ﬂ*ﬁjﬁ(poo)(gZPA)Z; where Z acts diagonally,
through its natural action on 7, 05g(,~) and via the universal character x : Z; — A* on

A. This is an invertible sheaf of & .>1

21 () ®z, A-modules over %IZ(Z (p)-

Remark 9.3.1. — We have decided to define our p-adic sheaves over %%Z (p), although
we could also have defined them over %[Z(}l (p*°). The base %IZ(%Z (p) is more directly related

to the classical Shimura variety, and since the map %Iz(}z (p>°) — %%Z (p) is affine, this does
not make any difference on the cohomology.

For any adic complete Z,-algebra R and any continuous character x : Z) — R* we
let X := 3R®A,XR'

For some arguments, it is useful to consider certain truncated versions of the sheaf
§%. Let Ay, = Z/p"Z[(Z/p"Z)*]. Let mtppn = IG(P™)n — Xlz(lll(p)n be the projection. For
m > n, we let Kpyp @ (Z/p™Z)* — A)S be the obvious character that factorizes through
(Z/p"Z)*. We let FJ . = (Tmn)«(Orc(pm), @z, MAn)[kmn]. The sheaf Ff | is a sheaf of
ﬁX}%lli(pm)" ®Ap-modules. If x : (Z/p"Z)* — R* is any character with R a Z/p"Z-algebra,
we denote by % , the sheaf obtained by base change.

We have the following maps of sheaves (with a slight abuse we think of them as
sheaves over XlzalZ (P"™)n) :

gzn

m,n m,n—1
g K g K
‘/m—l,n ‘/m—l,n—l

where the vertical maps are inclusions and the horizontal maps are induced by reduction

modulo the kernel of A, — Aj—;. We can set F5 , = colimy, 7} ,. Then we have
surjective maps F5, , — F5 4 and §" = lim, FL .

9.4. Comparison map. — Let f, : Xlz(lll(p")n — X[Z(lll(p)n Over Xl%lli(p”)n, we have

a universal multiplicative subgroup H, < G. Passing to the conormal sheaves we get a
surjective map :
wG — WH,
where wg is a locally free sheaf of rank 2 and wy,, is a locally free sheaf of rank 1. Moreover,
the Hodge-Tate map provides an isomorphism :
. 7D
T H 2, O

and it induces an isomorphism ﬁ,’fn — (wp,, )E.

— WH,,

As a consequence, there is a surjective map Q*0) — (wy )F ~ ff,n of locally free
sheaves on X[Z(llZ (p")n. We denote by KQ#0) the kernel of this map and we set KQF7) =

KQE0) & .

Remark 9.4.1. — One can think of the map Q*7) — 971“” ®w" as the projection to the
highest weight vector on the representation Sym”*St @ det” of the group GLo.
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9.5. Variant. — All the constructions can be performed over X, instead of X, because
the polarization has never been used. We have defined classical sheaves Q&) over Xpar
obtained by using the conormal sheaf of G’ — Xpar.

We let szalr,n be the open subscheme of X, , where the p-rank is at least one. We
let szai k(@™ — Xz, the moduli space of subgroups Hj, C G’ which are locally
isomorphic to p,m in the étale topology.

Lemma 9.5.1. — The map szalr,Kli(pm)n — szalr’mi(pm_l)n is étale and affine.

Proof. Similar to the proof of lemma 9.1.1.1. O

>1
We let X
schemes szalr,Kli(pm)n and we let X

verse limit over m of the formal schemes %galn k(™). We can define a sheaf §* of
O, >

xpar,Kli(

(p™) be the formal scheme equal to the limit indexed by n of the

>1

car.x1i(P™) be the formal scheme equal to the in-

poo)®ZpA—modules over X=! _.(p). Similarly, we can define sheaves Z%  of

par,Kli m,n
O, >1 ® A,-modules.
X;?ar,Kli(pm)" "

10. The U-operator

In this section we introduce the U-operator, which is an operator at Klingen level and
is strongly related to the T-operator of section 7 defined at spherical level. This operator
U corresponds to the operator p3~"U Kli(p),1 Of section 5.1.4 on the cohomology in weight
(k7).

10.1. Definition of the correspondence. — The operator U is associated to the
matrix diag(p?, p,p,1) inside GSp,(Q). We start by giving the definition of the moduli

space associated to this operator. Let @%}Z (") — %%}Z (p™) be the open subscheme where

the semi-abelian scheme is an abelian scheme. Let €y (p™) be the moduli over 2)%1 (p™) of
triples (G, Hy,, L) where L C G/[p?] is totally isotropic, L[p] is of rank p3 and LN H,, = {0}.
We recall that H; = Hy,[p]. In the following lemma the orthogonal is taken for the Weil
pairing inside G|p].

Lemma 10.1.1. — We have exact sequences : 0 — LN Hi — L — L/(LNH{) — 0
where LN Hi- is a truncated Barsotti-Tate group of level 1, height 2 and dimension 1 (the
(p,p) part of the correspondence) and L/(Hi- N L) is étale locally isomorphic to Z/p*Z
(the p?-part of the correspondence).

Proof. We start by recalling the following classical fact M%), Let S be a scheme over which
p is nilpotent, and let M — S be a finite flat group scheme. Then M — S is a truncated
Barsotti-Tate group scheme of level n if and only if M is killed by p" and for all s € S,
Mg — s is a truncated Barsotti-Tate group scheme of level n. We give the argument when
n =1 (a similar argument works for arbitrary n). By definition, we can suppose that S is
a scheme over Spec [F,,. By assumption, G is killed by p and it follows that the Frobenius
map F : G — G® factors into a map G — Ker(V : G® — G). We have to prove that
the morphism G — Ker(V : G®) — @) is faithfully flat. By assumption, it is surjective.
By the criterion for flatness by fiber it is flat.

It follows that we can check all the assertions of the lemma on geometric points. We
now work over a geometric point (we recall that the category of finite flat group schemes

14. We learnt this from Fargues, but we could not find a reference.
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over a field is abelian). The assumptions imply that L[p] & Hy = G[p], from which it
follows that L[p] is an extension 1 — Hi N L[p] — L[p] — L[p]/Hi N L[p] — 1 where
Hi- N L[p] is a Barsotti-Tate group of dimension 1 and height 2 (actually isomorphic to
Hi-/Hy) and L[p]/(Hi{ N L[p]) is a rank p étale group scheme. The map L/L[p] — pL
is an isomorphism for rank reasons. Moreover, because L is totally isotropic, pL = L[p]*
maps isomorphically to L[p]/(Hi- N L[p]) which is étale. The lemma is proven. O

We have two projections ¢; and to from €y (p™) to @]z(}z(pm) They are defined by
t1:(G,Hp,L)— (G,Hy,) and t2 : (G,Hy,,L) — (G/L,Hy,, + L/L).

10.2. Compactification of the correspondence. — As we want to define an action
of the correspondence on cohomology groups it is necessary to consider toroidal compacti-
fications. We will actually factor the correspondence as a product of two correspondences
and we will compactify both. The advantage of this approach is that it will be easy to
compare U and the other correspondence T studied in section 7.

We fix toroidal compactifications Xs, Xg;i(p)sy and Xpar s (for good polyhedral cone
decompositions such that ¥/ refines both ¥ and ¥”). We have maps p1 : Xk (p)y — X»
and p2 1 Xk1i(p)sy — Xparsv. We call as usual G the semi-abelian scheme over Xy, G
the semi-abelian scheme over X, sv. Over Xgy;(p)sy we have the chain G - G — G
where the first isogeny has degree p® and the total isogeny is multiplication by p. We drop
3, ¥ and ¥” from the notations if no confusion will arise.

Let Xpar be the formal completion of Xpar. Let us define %gﬁ;d as the open sub-
scheme of Xp,, where the kernel of the polarization X : G’ — (G)! contains a multiplica-
tive group. When G’ is an abelian scheme, this group is an extension of an étale by a
multiplicative group. We observe that .’{g;;et is contained in the p-rank at least 1 locus.
Let %gla;eféh (p™) = X be the moduli space of subgroups Hj,, C G’ locally isomorphic
in the étale topology to pym (where G’ is the semi-abelian scheme over Xpay).

We let @!(p™) be the formal subscheme of Xf;(p) xx }f[z{z (p™) where the universal

triple (G — G', H,,) satisfies Ker(G — G') N H,,, = {0}.

Lemma 10.2.1. — The formal subscheme €' (p™) of Xkui(p) Xx %%Z(pm) is open and
closed.

Proof. We first check that it is open. Let J C O, be the ideal defining Ker(G —
G')NH,, C Hy,. Let I. C Oy, be the augmentation ideal. The locus where Ker(G —
G')NH,, = {0} is the complement of the support of the I./J (viewed has a coherent sheaf

over Xkui(p) Xx %%l (p™)). It is closed by the rigidity property of multiplicative groups.
O

We let ¢ : €1(p™) — %%%Z(pm) be the tautological projection sending (G — G’, H,,)
to (G, Hy,). We have another projection €!(p™) — X,a induced from the map po. It
factors through X7 " and can moreover be lifted to a map gs : clipm) — %g;;%h(pm)
Indeed, under the isogeny of semi-abelian schemes G — G’ the subgroup H,,, C G maps
isomorphically to its image H] C G’ which provides the required lift. In conclusion, we
have ¢2(G — G', H,) = (G', H),).

As a result we have defined a correspondence (observe that the maps g2 and ¢; are
proper as they can be written by construction as a composition of proper maps):
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¢t(p™)

3532?,??% (p™) x%z (™)

We let €2(p™) be the open and closed formal subscheme of X ki (p) X ., f{;"a;%li (™)
where the universal triple (G’ — G, H], C G') satisfies Ker(G' — G) is not a multiplicative
group. By definition Ker(G' — G) is a subgroup of the kernel K ()\’) of the polarization X" :
G’ — (G")! which contains a unique multiplicative subgroup of order p, K (\')™. Therefore
the condition defining €2(p™) is that Ker(G' — G)NK(A\)™ = {0}. One checks as in lemma
10.2.1 that this condition is closed and open. Observe that over the interior of the moduli
space, Ker(G' — @) is an étale group scheme. We let 71 : €2(p™) — f{g;;e]éli(pm) be the
tautological projection given by (G’ — G, H], C G') = (G', H},).

There is a second projection €2(p™) — X induced by the projection p;. It factors
through %IZ(Z (p) and moreover it can be lifted to a map rq : €2(p™) — %%Z (p™). Indeed,
under the isogeny G’ — G the group H/, is mapped isomorphically to its image H,, C G.
In conclusion, ro(G' — G, H], C G') = (G, Hp,).

As a result we have a second correspondence (observe that the maps ro and 7 are
proper as they can be written by construction as a composition of proper maps) :

¢ (p™)
/ \
:{IZ(%’L (™) 3532?,% (r™)

Lemma 10.2.2. — The structural morphisms € (p™) — Spf Z,, for i € {1,2} are local

complete intersection morphisms ).

Proof. The morphism Xg;(p) — Spf Z, is a local complete intersection morphism.
There are étale morphisms €*(p™) — Xg;;(p) by construction. So the proposition follows.
O

We let €(p™) be the composite of these correspondences. Namely, we set

Q(pm) = Qz(pm) X"‘lvx;na:,eféli(pm)vt;m Q:l (pm)

and we obtain the following commutative diagram with cartesian center :

15. We say that a morphism of formal schemes & — Spf Z,, is a local complete intersection morphism
if it is locally topologically of finite type, flat, and its special fiber S = & xspf z, Spec F, — Spec Fy, is a
local complete intersection morphism (in the schematic sense, see section 4.1.3).
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/ \ % x
:{%z (™) 3%’2?3?1@' (™) %IZ(%Z (™)

There are two projections t; = g1 o, ta =190, : €(p™) — %[Z(%Z(pm) The notation
t1,to for these maps is justified by the following proposition :

Proposition 10.2.1. — The restriction of €(p™) to 2)%2(])"‘) is the correspondence
Cy (p™)-

Proof. Let (G, H,,, L) be a point of €y (p™). The isogeny G — G/L factors into G —
G/(L[p]) — G/L where L[p] is a subgroup of G[p] of order p3 such that L[p] N H,, = {0},
G/(L[p]) carries a polarization whose degree is a prime-to-p multiple of p? (it comes from
the p?-multiple of the polarization on G) whose kernel is an extension of an étale by a
multiplicative group. The kernel of G/(L[p]) — G/L is an étale subgroup of order p in the
kernel of the polarization on G'/(L[p]). This gives a map Cqy(p™) — €(p™) which identifies
€y (p™) with the locus of €(p™) where the semi-abelian schemes are abelian. O

10.3. Trace maps. — We now construct trace maps (or fundamental classes) which
will be used later to define the action on the cohomology. We start with the interior of
the moduli space.

Lemma 10.3.1. — The map t1 : €y(p™) — @%Z(pm) is finite flat.

Proof. The map is proper. The quasi-finiteness follows from the fact that an abelian
surface over a field of characteristic p and of p-rank at least 1 has only finitely many
subgroups of order p. Therefore the map is finite. We prove the flatness. The formal
scheme @%l(pm) is regular and Cg(p™) is Cohen-Macaulay by lemma 10.2.2. Flatness
follows from [53], chap. 23, thm. 2.3.1. O
. . 1 .
Lemma 10.3.2. — There is a normalized trace map 5Try, : (t1)« Oy (pmy = ﬁ’@%%i(pm).
Proof. We have a usual trace map for finite flat morphism Z%Trtl t(81)x Oy (pmy[1/D] =
ﬁfy21 &™) [1/p] and we need to check that lattices match. It is enough to check this over the
Kli —
ordinary locus and away from the boundary. Let (G, Hy,) € X35 (p™)(F,) be an ordinary
point with G an abelian scheme. Let T be the Tate module of this point. Then T =~ Zz.
The deformation space of this point is Hom(Sym?*T, @;) with ring W (F,)[[X, Y, Z]] where

L

the Serre-Tate parameter is the map ZIQJ — Zg ® Gy, given by the symmetric matrix

<)Z( }Z,) The fiber of this deformation space under ¢; is a disjoint union (*6) of spaces

with ring
W(EF)X, Y, Z, X" Y Z/(1+ X')P -1-X,(1+ Z’)p2 -1-2Y' -Y)

16. The disjoint union parametrizes the position of L™ C TV ® ppee and L C T ® Qp/Z, for the
universal rank p* subgroup L and L™, L its multiplicative subgroup and étale quotient respectively.
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which parametrize the following diagram of Serre-Tate parameters :

X Z
) Z Y y
Ly Ly @ Gy,
G2 @z k)
0 p 7y 0 p
2 2 o0
Y/ Ly @ Gy,
It is now clear that division by p? preserves the integrality of the Trace map. O

We now extend this normalized trace to the compactification. The next two lemmas
are the analogues of lemmas 7.1.1 and 7.1.2. We have to be a little bit careful since we
are now dealing with formal schemes.

Lemma 10.3.3. — There is a normalized Trace map z%'ﬁql © R(@)«Ogrpmy —
%
X

>1 .
f{li(pm)

Proof. By reduction modulo p™ we have a map of schemes over Spec Z/p"Z :

qi: Cl(pm)n — Xlz(llz(pm)n

By construction, C'(p™), and X[Z(llz(pm)n are local complete intersections over

Spec Z/p"7Z and the morphism ¢; is projective. The dualizing complex q!1 o X21( is
Kli

n

iy, @2, B L =

Here is an alternative defi-

™)

an invertible sheaf and we have canonical isomorphisms q!lﬁX21(
Kli

! ! T !

qlﬁX,%lli(pm)n_l' We define qlﬁ%%i(pm) = lim,, qlﬁX;;i(pm)n'

nition (suggested by the referee). The morphism ¢; : €' (p™) — %%l(pm) is projective,

therefore over each open affine Spf A — %[Z(}z(pm), the fiber ¢1(p™) x Spf A can

being

sz(}i(pm)
be algebraized to a projective scheme over Spec A. The definition of ¢} O (™)

Kl
local on the base, we can reduce that way to the algebraic situation. We want to produce
a fundamental class :

O : qfﬁle — qllﬁ3€21

xu(P™) K1 (P™)’

Away from the boundary, this map is provided by the trace map of the finite flat morphism

q ¢t (pm)’gng o) V75 (P™) (see section 4.2.2). We need to check that the map © is
Kli

well defined at the boundary. Actually, it is enough to see that it is well defined over the
entire ordinary locus since the intersection of the boundary and the non-ordinary locus
is of codimension 1 in the special fiber and the boundary is flat over Spf Z, (in other
words, in the spectrum of the local rings Spec g1 (m) , at closed points z of ¢l(p™), the
intersection of the boundary and the non-ordinary locus is of codimension at least 2).
The formal schemes X732, (p™) and €' (P")|x=2, (ym) are smooth. The smoothness of
X32.(p™) follows from the smoothness of X. The smoothness of ¢! (Pm)|x}=(§.(pm) away
from the boundary follows from the proof of lemma 7.1.1 where we established that the
completed local rings are isomorphic to W (F,)[[X,Y, Z, X", Y, Z"]/(1+ X")P—1- X, (1+
Z"\WY—1—Z,Y'—Y) using Serre-Tate theory. The smoothness at the boundary follows from
the description of the local charts. The main point being the smoothness of the modular
curves of level I'g(p) over the ordinary locus. As a consequence, the fundamental class
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extends over the ordinary locus : it is given by the determinant of the map on differentials

1 1
Dz, )/, ™ POz /20
Moreover, this fundamental class is divisible by p? since it is over the complement of

the boundary by a variant of lemma 7.1.1. Therefore we get a map 1%6 D Qi Oy o)
Kl

q!1 ﬁle and by adjunction (to prove the adjunction we can reduce to the algebraic

xu(P™)’
situation) a map R(q1)«T¢1(ym) = Oxz1 (my-
Kli

O
Remark 10.3.1. — 1t is possible to prove that Ri(ql)*ﬁ@(pm) =0if i > 0.

The proof of the next lemma is left to the reader. It is completely analogous to the
proof of the previous lemma.

Lemma 10.3.4. — There is a normalized trace map %TTH © R(r)«Og2pmy —
Oxp sty
10.4. Action on modular forms. — Over €!(p™) we have a universal isogeny G — G

. . . 1 1
whose differential is a map QG/ Jel(pmy QG JeL(pm)”
Assume for a second we work over €!(p>) (the projective limit of all € (p™)) or over
C(p™),, (the reduction modulo p" of €!(p™)) with m > n. Then there is a commutative

diagram of group schemes :
H,, — H],

L

G——¢

which induces a commutative diagram of conormal sheaves :

Vel wH;n 0
wa WH,, 0

Moreover, there is a Zariski covering of €!(p>) by affine opens Spf R (resp. of
Cl(p™),, by Spec R) such that the above diagram becomes isomorphic over Spf R (resp.
Spec R) to

()

(10.4.A) RPR—R——0
(p O)i . llR
O II%@RQRHO

We drop the hypothesis that m > n. It follows from the above discussion that we can
define a normalized morphism :

Q") — gralbr)

as the tensor product of the natural map ¢zQF — ¢7QF and a normalized map ﬁqé*w’” —
qw’.
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By composing with the trace map of lemma 10.3.3, we get a map R(ql)*QEQ(k’r) —

Q&) which gives an operator :
U1 € Hom (RT (X}, %, (0™), 247), RD (X7, (5™), 257)).

We check as usual that the definition of U; is independent of the choices of good
polyhedral decompositions.

We can proceed in a similar way with the correspondence @2(p™). The main sim-
plification is that the tautological isogeny G’ — G over €2(p™) is étale, and induces an
isomorphism on differentials. Thus, we obtain a canonical isomorphism

r3QFr) 5 k)

with no need to take a normalization. Applying the trace map of lemma 10.3.4 produces
a cohomological correspondence R(ry).r3 (k1) — Q) and as a result an operator

Us € Hom (RT (X2, (p™), 257)), R (5, (™), 207).
We denote by U = Uj o Us.
10.5. Action on mod-p forms. — In this section we analyze the action of the U

operator in caracteristic p.

10.5.1. reduction modulo p. — By taking m = 1 and reducing modulo p, we obtain the
following diagram (we still use the same letters to denote the various projections) :

C(p)l
0 T
C*(p)1 Cl(p)
/ \ % X
Xiz(llz (P)1 Xg;r_,%li (P Xlz(llz (P)

By reduction modulo p (and proposition 4.1.2.1), we obtain the following two
. *0)(k, 'Ok, 1
cohomological correspondences QQQ( )| xm=et ), qlﬁ( )| XZLp) OB C*(p); and

! r
TEQ(k?T”X}%}i(pﬁ — )|X;’Z§:§§u(?)1 on C?%(p);.

They induce operators (we keep using the same notations as in the previous para-
graph)

Ur € Hom(RI (X775, Q®n) RE(XZL (p)1, Q%))

and
U2 € Hom(RF(sz(lli (p)1, Q7), RF(X;;;%u (p)1, 2%1)).
We set U = Uj o Us.
10.5.2. The non-ordinary locus. — We now study the restriction to the non-ordinary

locus. The following lemma is the analogue of proposition 7.4.1.1. Notice that everything
is simpler in this setting and that there are no restrictions on the weight.

Lemma 10.5.2.1. — 1. Under the isomorphism g3wP™! = ¢twP™!, we have ¢iHa =
qiHa.

2. Under the isomorphism r3wP~! = rtwP~! we have riHa = riHa.
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3. The following diagrams are commutative :

Uy

qgg(k,r) qllg(k,r)

o o

g Qkr+e=1) T gl i+ (p-1)

rEQ k) k)

o o

Q=1 P2 k(1))

Proof. The correspondence C'(p); and C?(p); are Cohen-Macaulay. It is enough to
prove the statements over the interior of the moduli space and the ordinary locus. Then
1 follows from lemma 6.3.4.2. Remark that the way the isomorphism qgw(pfl) ~ q’l*w(pfl)
is constructed is precisely the canonical map of the lemma.

The point 2 is easier since the isogeny G’ — G over C?(p); is étale and the formation
of the Hasse invariant commutes with étale isogeny.

We now prove the commutativity of the diagrams. We can rewrite the first diagram
as the composition of two diagrams

qgg(kw) qTQ(kﬂ’) q!lg(kﬂ")

o o o

qgg(kﬂ‘ﬂp—l)) - q?l*Q(va'i‘(P—l)) - q!lg(kn"+(p—1))

The first left square commutes by 1. The second square is the tensor product of the
normalized fundamental class ¢ Ox, — q!1 OUx, and the map Ha : qu(k’T) — q{Q(k’H(p_l)).
It is also commutative. One proves the commutativity of the second diagram along similar
lines. O

Remark 10.5.2.1. — We can speak of the Hasse invariant on C(p); and C?(p); without
having to worry about which semi-abelian scheme is used to define it.

Lemma 10.5.2.2. — The Hasse invariant is not a zero divisor in C1(p); and C*(p);.

Proof. Both schemes are Cohen-Macaulay of dimension 3. Since an abelian surface with
p-rank at least one has only finitely many subgroups of order p, we deduce that the non-
ordinary locus in C1(p); or C?(p); has dimension 2. As a result, the Hasse invariant
cannot be a zero divisor. d

We let Xz1.(p)1 C Xlz(lll (p)1 be the vanishing locus of Ha. This scheme is canonically
isomorphic to X! under the projection p;. Taking the non-ordinary locus at all places,
we obtain a diagram:
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C=(p)
C*=ph Ch=(ph
Xt X (o X!

Using lemma 10.5.2.1, 3. and proposition 4.1.2.1, we obtain cohomological correspon-
dences:
R(ql)*(qQ)*QW)|X$;§{ti?1 o~ UED =1 and R(r)w(r2)*QE7 |21 = QB o

; (P
par,Kli
They induce operators (that we still denote by the same way as in the previous paragraph):

U, € Hom(RF(Xg;’%’lizl(p)l’ Q(kvr))’ RF(XIZI, Q(k,r)))

and

Us € Hom(RI(XT!, 060), RPCY8 57 (), 2447).

We set U = Uy o Us. By lemma 10.5.2.2, we have a map of triangles:

R(ql)*qgg(k,r) Q(k,r)

Ha Ha

R(ql)*qgg(kﬁr(p—l)) I o (XS (RS D)

kyr+(p—1

— .

R(ql)*(q2)*Q(k’r+(pil)) ‘meet,:1

N e
par,Kli (p)l ’Xfl

+1 +1

A similar result holds for the other correspondence. It follows that the U-operator
acts equivariantly on the long exact sequence

* r)y Ha 1yx r — * = r —
H*(X7,(p)1, Q%) = HY(XZ (p)1, QE D)) o 1 (X i (p)y, Qr =)y

10.5.8. Invariance under multiplication by Ha'. — The following lemma is the analogue
of proposition 7.4.2.1.

Lemma 10.5.3.1. — 1. Under the isomorphism (qg)*pr1 = (ql)*(,upQ*1
(g2)*Ha’ = (q1)*Ha’.
2. Under the isomorphism (r2)*wP”~! = (r1)*w?’ =1, we have (ry)*Ha/ = (r1)*Ha’.

3. The following diagram is commutative :

, we have

HO(x, Q) — s HO(XT, )

iHa’ lHa’

HO (Xlzl, Q(k,Terzfl)) 4U> HO (X1:1, Q(k,’r‘+p271))
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Proof. Point 1 follows from lemma 6.3.4.2. Point 2 is easy (the isogeny is étale). Point 3
is an immediate consequence of 1 and 2. ]

10.6. Action on p-adic modular forms. — The universal isogeny over €!(p™) or
C*(p™),, induces an isomorphism g3 H,, — ¢{H,, and thus a map ¢ T — G Ty, for
m > n and ¢3§" — ¢iF". As a result we can define the Uy operator. The definition of
Us is highly similar and we let U = Uy o Uy. It acts on RF(XI%lli(pm)n,ﬁT’fw ® w") and

R (X5,(p%), 3~ @ w").

10.7. Comparison map and the U correspondence. — By section 9.4, for all
(k,r) € Z>0 x Z we have an exact sequence of sheaves over Xlzalz (P")n -

0— KQkr) - k) & gk @uw" — 0.
Lemma 10.7.1. — U € pEnd (RD(X 75, (p")n, KQE)).
Proof. This is obvious on the diagram 10.4.A. O

11. Perfect complexes of p-adic modular forms

In this section we finally consider the cohomology of our interpolation sheaf and apply
the ordinary projector U to produce a perfect complex.

11.1. Finiteness of the cohomology on X%lli(p)l. — In this section, we will deduce
the finiteness of the ordinary cohomology (with respect to U) over Xlz(lli(p)l from the

finiteness of the ordinary cohomology (with respect to 7") on Xl21 established in section
8. In order to do so, we need to analyze carefully the relation between U and T

11.1.1. The operators U and T over the ordinary locus. — In this subsection, we will
work over the ordinary locus. Since we are only interested in degree 0 cohomology groups,
we can work over the complement of the boundary by Koecher’s principle. The various
Hecke operators we will introduce respect cuspidality. That way, we do not need to worry
about compactifications (although taking care of what happens with compactifications
would have been possible).

First of all, we claim that we can decompose the Hecke operators Ty : H (X;QM, Qkr)(—D)) —
HO(X72, Q"% (=D)) and T : HY(X{% QK7 (-D)) — HYX;2,,Q%"(-D)) into
Ty = T{ + 1" and Ty, = T§' 4+ T3". The operator Tf" accounts for all isogenies G — G’
with kernel a group of étale rank 2 and multiplicative rank one. The operator 77" accounts
for all isogenies G — G’ with kernel a group of multiplicative rank 2 and étale rank one.
Similarly, the operator T§! accounts for all isogenies G’ — G with kernel an étale group.

The operator T5" accounts for all isogenies G’ — G with kernel a multiplicative group.
Lemma 11.1.1.1. — For all™ > 2 and k > 1, the operators
Ty HO(X¢, Q®n)(—D)) — HO(XZd,, Q%) (-D)) and

par,1>

T HO(Xxord,, Q) (— D)) — HO(X9d, Qkr) (— D))

par,1s
are 0.

Proof. This follows from the proof of proposition 7.4.1.1 (see also lemma 7.1.1 and lemma

7.1.2). O

We recall that ) C X is the open formal subscheme where G is an abelian scheme.
The ordinary locus of ) is denoted by 2)°"¢. We now introduce a Hecke correspondence ©
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over 9°"¢. It parametrizes pairs (G, L) where L C G[p?] is a totally isotropic group scheme
which is an extension of an étale group scheme locally isomorphic to Z/pZ @ Z/p*Z by a
multiplicative group scheme locally isomorphic to j,. We have two finite flat projections
91,92 : © — Yord given by ¢1((G,L)) = G and ¢2((G,L)) = G/L. We can associate
to this correspondence an Hecke operator T” (normalized by p~—3~") and it is clear that
T" acting on HO(X{"¢, Q*7)(—D)) is the operator T¢* o Ts' which is also equal to T by
the lemma above if » > 2 and k > 1. The second projection g : ® — ¢ actually
lifts to g2 : ® — Y% (p) by mapping (G, L) to (G/L,G[p]/L). If follows that the map
T' € End(H°(X¢", Q1) (—D))) factors through a map

H (X7, Q) (= D)) 5 HO(X i (p), 24 (= D)) - HO(X 77, Q) (- D))

where the first map is the canonical inclusion i. We call 7" : HO(X % (p)1, Q#7) (-D)) —
HO(X¢rd Qk7)(—D)) the second map. We can compose it again with the natural inclu-
sion i and we obtain that way 7" an endomorphism of HO(X¢(p)1, Q%7 (~D)). The
correspondence underlying the operator 7" parametrizes triples (G, H, L) (with H C G|[p]
multiplicative of order p, L as above, we do not require that L N H = {0}). The first
projection is (G, H, L) — (G, H) and the second (G,H,L) — (G/L,G[p]/L). 1t is key to
observe that the definition of L is independent of H. As a consequence, for r > 2 and
k > 1, there is a commutative diagram where all vertical maps are the obvious inclusions:

HO(X g (p)1, Q) (= D)) —— HO(X g (p)r, 247 (= D))

|

HO(Xpr, 007 (= D)) — = HO(X{, Q0(- D))

Lemma 11.1.1.2. — The action of T" is locally finite on H(X%d(p)1, Q%) (—-D)) if
r>2andk > 1.

Proof. The action of T is locally finite on HO(X¢"¢, Q") (—D)) by proposition 7.4.1.1
and we have that (T"")"f, n € Zso) = i((T)"T"f, n € Z>o) + F,f. O

Lemma 11.1.1.8. — On HY(X ¢ (p)1, Q%) (—D)) we have U o T" = U o U for r > 2
and k > 1.

Proof. Over Yf&gl(p)l, we can decompose T"" = U + F where F accounts for all isogenies
G — G/L where L is such that L N H # {0}. We are left to prove that U o F' = 0. Let
$H — Y%(p) be the moduli space of (G, H, L, L) where (G, H) € YZ4(p)1, L C G[p?] is
of type (1,p, p,p?) (that is, an extension of an étale group scheme locally isomorphic to
Z/pZ&Z/p*Z by a multiplicative group scheme locally isomorphic to p,) and LNH = {0},
L' c (G/L)[p4 is of type (1,p,p,p?) and L' N (G[p]/(L N G[p])) # {0}. We have two
projections s1(G,H,L,L") = (G,H), s2o(G,H,L,L") = ((G/L)/L',(G/L[p])/L’). This
correspondence is associated to the operator U o F. We observe that G[p]/L C L'. As a
result, the map s3Q(19) — s¥Q(10) factors through pst QLY. Tt then follows easily that
the non normalized cohomological correspondence © : s5QF7™) — 51 Q*7) factors through
p6+2r+kpllﬂ(k’7"). The factor p?"+* arises from the map on differential and the factor p®
from the fundamental class (we get p3 from U and p® from F which is a “direct factor” of
T""). The operator U o F arises from the normalized cohomological correspondence Iﬁ@

(we get p3*" from both F and U). When k > 1, this map reduces to 0 modulo p. ]
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Corollary 11.1.1.1. — The action of U on HO(XL(p)1, Q%" (=D)) is locally finite for
allr>2 and k > 1.

Proof. Let f € HO(X%(p)1, Q%) (~D)). Then
(U™ f, n € Zso) =U(T")"f, n € Z>o)) + Fpf
and local finiteness follows from lemma 11.1.1.2. O

We denote by f the ordinary projector associated to U on HO(X%%(p)I, Q(’“")(—D)).
The morphism X% (p) — X" is finite étale of rank p+1. We let Tr : HO (x5d(p), Q)
HO (x4 k1)) be the trace map.

1

Lemma 11.1.1.4. — For all n > 0, we have Tro U™ o4 = pT™ mod p* as endomor-
phisms of HO(xord, Qk)),

Proof. By definition, the Hecke correspondence associated to TroU" o parametrizes over
974 triples (G, H, L,) where H C G[p] is a group of order p and multiplicative type, and
L, C G[p®"] is a totally isotropic subgroup which is an extension of an étale group locally
isomorphic to Z/p"Z @ Z/p*"7Z by a multiplicative group which is locally isomorphic to
ppn, and such that H N L, = {0}. The projections are given by (G, H, L,) — G and
(G,H, L)  (G/Ly). We can decompose the operator T™ as T™¢ + T™™  where T™¢
accounts for all isogenies G — G/L,, where L, is a totally isotropic subgroup which is
an extension of an étale group locally isomorphic to Z/p"Z @ Z/p**7Z by a multiplicative
group which is locally isomorphic to j,n, and T™™ accounts for all the other isogenies
(we have T = T"). We now observe that any isogeny G — G/L occuring in 7™ will
factor through multiplication by p on GG. So we deduce, reasoning as in the proof of lemma
11.1.1.3, that 7™ = T™ mod p*. It is clear that Tr o U™ 0 i = pT™* and the factor
p arises from the fact that given L,, we can find p different subgroups H of order p and
multiplicative type such that H N L,, = {0}. O

Corollary 11.1.1.2. — Assume that r > 2 and k > 2. Then the canonical map f o :
eHO (X ¢, Q) (D)) — fHO (X (p)1, Q*")(=D)) is bijective, where e is the ordinary
projector for T and f is the ordinary projector for U.

Proof. We first prove the surjectivity of the map. Let
G € fHO(Xii(p)1, Q7 (—D)).

Then T"U~G € HY(X{4, Q") (—D)) and eT"U'G € eH(X{4, Q") (—D)). By
lemma 11.1.1.3, fi(eT"U~'G) = fT"U'G = fUU'G = G. We now prove injectiv-
ity. We consider the map foi : eH? (X Q*7)(—D)) — fHO (X% (p), Q*7)(~D)). This
is a map of complete flat Z,-modules. The reduction of this map modulo p is the map of
the corollary (by a cohomological vanishing which ensures the surjectivity of the reduction
map), and it suffices to prove the injectivity of this new map. This map is surjective by
Nakayama’s lemma and the first part of the proof. Let F € eH° (.’{"Td, Q(k”")(—D)). We
assume that f oi(F) = 0. Applying lemma 11.1.1.4 for n large enough, we find that
Tr(f o (i))(F) = pF = 0 mod p*. We deduce that I € peHO(%‘”d,Q(k”")(—D)). By
induction, one proves easily that F € [, p"eH? (X%, Q(’”)(—D)) = {0}. O

11.1.2. The operators T and U on Xlzl. — In section 7.4.1, we have constructed two
cohomological correspondences (for k+r>2+p—1landr>2+p—1):

Th : pgg(’w) |Xp§a1r L — p!lg(km) |X1§1
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and

x=t

par,1

Ty pi*0)| o — phQ)

which we can restrict to the p-rank one locus to get two cohomological correspondences
(still denoted in the same way) :

!
T : pEQ(k’T”X;alr’l - piQ(k’T)|Xl=1

and

T : pytr) |X 1 — pp |Xpa1rl
and we obtain operators 7T} : HO(Xpalrl,Q(k”)(—D)) — HOY(Xx7T!, Q%) (—-D)) and Ty :
HO(XTY, Q®n(-D)) — HO(XL,, Q%) (=D)). We let T = Ty o Tp. The operators T}

and T can be decomposed in this setting into Ty = T{"+ T +T7° and Ty = T3 +T5' +T5°
(see section 7.4.2).

Lemma 11.1.2.1. — U =T on HO (X7, Q") (D)) if k+r > 2(p+ 1), r > 24 (p—1).
Proof. By definition, U = T o T§. It is enough to prove that 79° = 0 and T{" = T4 = 0

and this follows from corollary 7.4.2.1. O
11.1.8. Finiteness. — We are now ready to prove the finiteness of the ordinary cohomol-
ogy on Xlz(lli(p)l.

Corollary 11.1.3.1. — 1. Forallr > 2 and k > p+ 1, the action of U on

RI(X 73, ()1, 27 (-D))
is locally finite. We denote by f the corresponding projector.
2. For allr > 2 and k > p+ 1, the natural map induced by pull back:
eRI(X7', Q%) (=D)) — fRI(X7,(p)1, 257 (-D))
is a quasi-isomorphism.

3. There is a constant C which does not depend on the prime-to-p level KP such that
forallk > C and r > 3, the map

eRT (X1, Q%) (—D)) — fRI( Klz( )1, Q7 (=D))
s a quasi-isomorphism.
4. The map
eH' (X1, Q%2 (=D)) = fH' (X, (p), Q%2 (=D))
is bijective for k > C and ¢ = 0 and injective for k > C and i = 1.
5. Forr >2and k > C, fRI( Klz( )1, QB (=D)) is a perfect complex of Fp-vector
spaces of amplitude [0 1].

Proof. The cohomology RI'( Klz(p)l, Q1) (—D)) is computed by the complex :
HO(XEH ()1, Q%7 (=D)) — colim, H(X y;(p)1, @+ P=D" (—D) /(Ha)").

By corollary 11.1.1.1, the action is locally finite on the first term when » > 2 and k > 1. It
is enough to prove that it is locally finite on each HO(XKh(p)l Qr+p=1n) (— D) /(Ha)™)
for r > 2 and k > p+ 1. The case n = 1 follows from lemma 11.1.2.1 and lemma 8.1.1. In
general, one argues by induction.

The map

eRI(X7', Q%) (=D)) — fRI(X7,(p)1, 247 (~D))
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is represented by the following map of complexes :

HO(X 73 (p)1, 27 (= D)) — colim, HO(X 2 (p)1, Qbr+=Dm) (D) / (Ha)")

i T

HY(X72, Q) (-D)) HO(XE!, Qb -0 (- D) /(Ha)")

We need to prove that the vertical maps become isomorphisms after apply-
ing f on the top and e on the bottom. For the left vertical map, this is corollary
11.1.1.2. We will see that for each n, the map eHO(Xlzl,Q(k’TJr(p_l)”)(—D)/(Ha)") —
fHO(X[Z(lli(p)l, Qer+(e=1n)(_D)/(Ha)") is an isomorphism. For n = 1, this follows from
lemma 11.1.2.1. The general case follows easily by induction. Points 3, 4 and 5 follow
from proposition 8.2.1. O

11.2. Finiteness of the ordinary cohomology over X~! and f{}z{}z(p) — In the
following theorem we establish relations between the ordinary cohomology over ¥=! and
classical cohomology in weight (k,r) if k is large enough.

Theorem 11.2.1. — Fork>p+1andr > 2 :
1. The Hecke operator U acts locally finitely on RF(%KlZ( ), Ak (= D)),
2. The Hecke operator T' acts locally finitely on RT(X=1, Qkr ( D)).

3. The complezes RT(X21, Q*7)(—D)) and RF(%@( ), QBT (—D)) only have co-
homology in degree 0, 1.

4. Let us denote by f the ordinary projector associated to U and by e the ordinary
projector associated to T'. Then the natural map :

eRI(x21, Q"7 (=D)) — fRI(X7,(p), Q"7 (=D))
18 a quasi-isomorphism.

5. There is a constant C' which does not depend on the level KP such that for k > C
and r > 3, the map

eRD(X, Q*")(~D)) — eRD(X=, Q") (D))
s a quasi-isomorphism.
6. For all k> C,
eH' (X,Q#2 (~D)) — el (221, Q%) (- D))
is bijective for i = 0 and injective if i = 1.
7. For all k > C and r > 2, fRI'(X Klz( ), Q") (D)) is a perfect complex of Z,-
modules of amplitude |0, 1}.

Proof. Over Xlz(llZ (p)n or X1, we have the following exact sequence of sheaves :

n—1

0 — Q®)(=D) — colimQ*r " (=1 (_ D) — colim Q" (=1) (_ D) /Ha?"" — 0

where the limit in the middle is over multiplication by powers of Ha?"~" which lifts to
a section of HO(X,,w?"  ®=1). The middle sheaf is also the restriction of Q*")(—D)
to the ordinary locus. This is an acyclic resolution of Q") (—D) by flat Z/p"Z-sheaves.
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Indeed, all sheaves are acyclic relatively to the minimal compactification and the middle
and right sheaves are supported over affine subschemes of the minimal compactification.
Passing to the limit over n we obtain an acyclic resolution of Q*7)(—D) over Z{IZ{}Z (p) or
X! by flat, p-adically complete and separated sheaves of Zp-modules. Let us denote by
M?® and N°® the complexes concentrated in degree [0, 1] that compute the cohomologies
RI'(%2, Q1) (—-D)) and RF(%KIZ( ), k1) (—D)) using these resolutions. They are ob-
jects of C/1%(Z,) by construction. By lemma 8.2.1, corollary 11.1.3.1 and lemma 2.1.2,
we deduce that the actions of T" and U are locally finite on M*® and N°®. The points 4
and 5 follow from corollary 11.1.3.1 using proposition 2.2.2. The point 6 also follows by
induction on n from corollary 11.1.3.1. Finally, we deduce 7 by another application of

proposition 2.2.2.
O

Corollary 11.2.1. — For k > p+ 1, the natural map
eH" (X, Q(k’2)(_D) ® Qp/Zp) — fHO(X Klz(p) Q(k’2)(_D) ® Qp/Zyp)
18 a quasi-isomorphism.
Proof. The map
eH’(X, Q(k’Q)(_D) ® Qp/Zp) — eHO (X1, Q(k’Q)(_D) ® Qp/Zyp)
is an isomorphism since the complement of XZ! in X is of codimension 2. The claim follows

from theorem 11.2.1, point 4. O

11.3. The perfect complex. — We can finally construct a perfect complex over A and
obtain an Hida theory for higher cohomology. We specialize to r = 2 as this is the case of
interest.

Theorem 11.3.1. — Consider the complex RF(%Kh( ), & ®w?(=D)).

1. The action of U is locally finite. Call f the associated projector.

2. The complex fRI'(X Klz( ), §" @ w?(=D)) is a perfect complex of A-modules con-
centrated in degree [0, 1].

3. For all k >0, U is locally finite on RF(%Kh(p) Q2 (—D)) and there is a quasi-
isomorphism :

FRI(X55,(p), Q2 (=D)) — fRI(X55,(p), §* @ w*(=D)) @F 1, Zp.

4. There is a constant C which does not depend of the level KP such that for all
k > C, the canonical map

eH'(%, Q" (=D)) — H'(fRI (X7, (p), 3° ® w*(=D)) @F 1 Zp)
is bijective for i = 0 and injective for i = 1.
Proof. For all m > n, we have the following acyclic resolution of the sheaf 7% | ®w?(—D)

>1
over Xz.(p)n

0= ZL , ®wl(=D) — colimZL ,(~D) ® w " ¢=b (D)

n—1

— colimy.Z}; (D) ® w*%"" =D (_py/Ha?" " 0.
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Indeed, all theses sheaves are acyclic relatively to the minimal compactification by [50],
thm. 8.6 and the middle and right sheaves have affine support in the minimal com-
pactification. For all £ € Z>p, we have an exact sequence of sheaves over X%li(p)l
0 = KQ®2(-D) —» Q*2)(—D) - FF,(~D) — 0 (see section 9.4). Using a resolution
as above for all sheaves in this exact se(iuence, we get a commutative diagram :

HO(XI:{%i(p)l,ﬁ{fl®w2(—D))HHO(XKli(p)lzl,colimﬂll®w2+l(1’ (-D)/Ha!)

HO(X 73 (p)1, Q2 (- D)) HO(X 7} (p)1, colimQE2+H=1)(— D) /Hal)

HY(X 22 (p)1, KQF2)(—D)) HO(X 7, (p)1, colimK Q2+ (-1)(—D)/Hal)

0 0
Assume that k& > p + 1. Since U is locally finite on H*(X 52 (p)1, 2*2)(~D)) and on
HO(X 7} (p)1, colimQF24ne=1) (D) /™),

by corollary 11.1.1.1 and corollary 11.1.3.1, it is locally finite on all the modules in the
above diagram by lemma 2.1.1. Moreover, by lemma 10.7.1, U acts by zero on the bottom
horizontal complex. Applying the projector, we obtain a quasi-isomorphism:

JRT(X 53, (p)1, Q%7 (=D)) — fRE(X gy, (01, F11 © w?(=D)).

For all m, the operator U™ arises from the correspondence C, which parametrizes
triples (G, H1,G,,) with (G, Hy) € Xlz(lli(p)l and G — G, is an isogeny whose ker-
nel is a group L,, satisfying L,, N H; = {0} and moreover, if G is abelian L,, is
an extension of an étale group scheme locally isomorphic to Z/p*™Z by a truncated
Barsotti-Tate group of level m, height 2 and dimension 1. We have two projections

1: Chy — sz{lli(p)l defined by z1(G, H1,Gp,) = (G, Hy) and 29 : C — sz(lli(p)l defined
by 20(G,H1,Gp) = (Gm,Im(Hy)). Actually, zo lifts to a map z, : C),, — Xlz(lli(pm)l
defined by 22(G, H1,Gp,) = (Gm, H),) where H), is the image of G[p™] in Gp,.

As a result we have a factorization (U™)" of U™ in the following diagram :

UT’!L
RI(X 7y, ()1, 1 © w?(=D)) == RU(X3,(p)1, 7,y © w?(=D))

T (U'm) T
RF(XIZ(lli(p)lv glk,l ® W2(_D)) BN RI( Kh( )1 ﬂl’fl ® WQ(_D))

It follows that U is locally finite on colim,, RI'( Klz( )1, FE 1 ®w?*(—D)) and that
we have an isomorphism :

feolimuRU(XZh ()1, 7K, © w?(~D)) = FRO(XZL(p)1, 267 (~ D)),
We deduce from lemma 2.1.2 that U is locally finite on RT(X%,(p), §* @ w?(—D)).
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We now remove the assumption that k > p + 1, so we take k € Z>¢. Specializing in
weight k& we deduce that U is locally finite on RF(%IZ(Z (p), & @ w?(—D)). Using one more
time the exact sequence 0 — KQ*2)(—-D) - Q®2)(—D) — ﬁﬁl(—D) — 0 we may now
deduce that U is locally finite on RF(XI%}Z. (p)1, Q") (=D)). Reasoning as before we find
that

feolim, RD(X 2, (p)1, X | @ w?(=D)) = fRI(X7y;(p)1, Q%" (-D))

is a quasi-isomorphism (for all £ > 0). Moreover, proposition 2.2.2 and theorem 11.2.1
imply directly the points 3 and 4 of the theorem. O

In order to complete the proof of theorem 1.1 of the introduction, we still have to
obtain a control theorem for characteristic 0 classes of weight k£ > 0. This will be obtained
at the end of the next part of this work in theorem 14.8.1.

PART III
HIGHER COLEMAN THEORY

12. Overconvergent cohomology

The goal of this section is to construct an overconvergent version of the cohomologies
considered in part IT of this work. We first consider analytic Siegel threefolds of deep Klin-
gen level and neighborhoods of the locus where the universal subgroup is multiplicative.
We then construct certain Banach sheaves which interpolate the classical automorphic
sheaves and we take their cohomology. The most delicate result of this section is a coho-
mological vanishing for these overconvergent cohomologies (proposition 12.9.1).

12.1. Notation. — We introduce certain notations that are specific to this part of the
work. In this section, the base ring for our constructions is O the ring of integers of C,
rather than Z,. The p-adic valuation is normalized by v(p) = 1. For any rational number
w, we let p* € O be an element of valuation w. If M is an O-module, we denote by
M, = M/p*M. We let Adm be the category of admissible O-algebras. We recall that
an admissible O-algebra is a flat O-algebra which is the quotient of a convergent power
series ring O(X7y, -, X;) by a finitely generated ideal. We let NAdm be the category of
normal admissible O-algebras.

12.2. Formal Siegel threefold and the Hodge-Tate period map. —

12.2.1. The Hodge-Tute period map. — We start by introducing several formal and ana-
lytic Siegel threefolds as in section 1.2 of [63]. Let X be a polyhedral decomposition which
is ['-admissible and let X — Spec O be a toroidal compactification of the Siegel threefold
with spherical level at p and tame level KP.

Let X be the associated analytic adic space over Spa(Cp,, O). Let X be the formal
p-adic completion of X. We let X'(p") — X be the adic Siegel threefold with full p™ level
structure at p. Let X(p™) be the normalization of X in X (p").

We denote by 2) the complement of the boundary in X and by 2)(p™) the complement
of the boundary in X(p"). Over 2)(p") we have a universal map (Z/p"Z)* — G[p"] of
group schemes which is a symplectic isomorphism up to a similitude factor on the analytic
generic fiber. We also have a Hodge-Tate period map G[p"] — wg/p"wa (we are using
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the polarization to identify wg and wgt). We denote by HT : (Z/p"Z)* — wg/p"wg the
composite of the two maps.

In [63], prop. 1.2 we show that the Hodge-Tate period map can be extended over
X(p") to a morphism

HT : (Z/p"Z)* — wg/p™.

Following [63], prop. 1.10, there is a formal scheme X(p™)™°¢ — X(p™) which is the
normalization of a blow up and which carries a rank 2-locally-free modification wgf"d — wg
such that

1
1. pr-lwg C wg“’d C wa,

2. the Hodge-Tate map factors through wg“)d /p"w¢ and induces a surjective homo-
morphism :

1
(Z/an)4 XKz ﬁ:{(pn)mod — (JJgLOd/pn_ p_l(JUgLOd.

12.2.2. The canonical filtration. — We equip (Z/p"Z)* with the canonical basis
(e1,€2,€e3,e4) and the standard symplectic form given by the matrix J (see section
5.1). For all € € [0,n — ]ﬁ] NQ, we let X(p",€) — X(p™)™? be the formal scheme where

HT(e;) = 0 in wg“’d/ pengd. This is an open subscheme of an admissible blow up of
:{(pn)mod'

Over X(p", €) we denote by Filo" C (wo?), = wiod/pcwi? the coherent subsheaf
generated by HT(e3) and HT(e3).

Lemma 12.2.2.1. — The sheaf Filg"" is a locally free sheaf of rank one of Oy o) /D"~

modules and locally a direct summand in (wW&H°?)..

Proof. We work locally over some open affine Spf R of X(p™,€). So we can assume that
we have (w°?).(Spf R) ~ R? and the matrix of HT is given by

0 a c e
(0547
in the canonical basis of (Z/p"Z)*. By symplecticity (the kernel of the map HT ® 1 :
R} — R? is a Lagrangian subspace) we get ad — bc = 0. The map HT ® 1 is surjective
and therefore there is (locally on R) a 2 x 2 minor which is invertible. Let us assume that
cf —de is a unit in R,. Localizing further on R, we can assume that c, f or d, e are units in
R.. Let us assume that c, f are units for example. We deduce that HT (e2) = SHT(e3) and
that Filé®" is generated by HT(ez), a direct factor is provided by the submodule generated
by HT (e4). O

The formal scheme X(p”, €) is covered by the open formal subschemes X(p", €, e2) and
X(p", €, e3) which are respectively defined by the conditions HT(e3) generates Fil{®" and
HT(e3) generates Filc*".

12.2.3. The canonical quotient. — We denote by
Gro®™ = coker(Fil®™ — (w°?),).
Passing to the quotient we get a canonical map
HTy : (Z/p"Z)*/{e1, ea, e3) ~ Z/p"Z — Grc™
inducing an isomorphism

HT4 ®1: Z/an X (ﬁ%(p”,e))e — Grean

€ .
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12.3. Flag varieties. — We let §&, — X(p")™°? be the flag variety parametrizing
locally free direct summands of rank one Filwg“’d C wg“’d. This is a P'-bundle.

For all rational numbers 0 < w < ¢, we denote by FLy, ¢y = FLn X g (pnymod X(p"€) —
X(p™, €) the admissible formal scheme parametrizing invertible sheaves Filwgf"d C wg?"d
satisfying

(Filw@*d),, = Filn,

For all positive rational numbers w’ < w, we also denote by 32;’6 waw — 5w the
normal admissible formal scheme which parametrizes basis p : Og o+ ~ wed [Filwmod

n,e,w,w’

such that p,y = HT4 ®1 mod pv.

12.4. Group action. — Denote by &Gy, the formal p-adic completion of GSp,. Let
Rli C BGp, be the Klingen parabolic of upper triangular matrices with blocks of size 1 x 1,
2 x 2 and 1 x 1. There is a well-defined action of &&p,(Z/p"Z) on X (p™), trivial over
X and it extends to an action on X(p™) by normality and on X(p")™°¢ (since X(p")™? is
obtained by blowing up along ideals which are invariant under the group action and by
normalization). It is clear that there is an induced action of Ki(Z/p"Z) on X(p™,€). We
denote by Xk (p", €) the quotient of X(p", €) by the finite group KU(Z/p"Z).

For all rational numbers w’ > 0, we let T, be the formal group scheme defined by

T (R) =Zy (1+ p¥ R) for all R in Adm. We let 2%, be the connected component of the
identity in ¥,. For all R in Adm, 32),(}2) =1+ p¥ R. The group T?U, acts on SEIE w
(it acts on p) and the map 3226 wa " SEnew 18 A ‘I?U,—torsor.

For all integers n > w’ we let T,/ , be the fiber product Ty Xz /g0 KU(Z/p"Z)

where the map Ri(Z/p"Z) — T,y /TY, is the composite of RE(Z/p"Z) — (Z/p"Z)* (given
by the last diagonal entry) and the natural projection (Z/p"Z)* — T,y /T2, (recall that
w' < n).

Observe that ‘Z?U, is naturally a subgroup of T, ,,. The action of T?U, on SS:{ e’ CAT

be extended to an action of T, , on SS:E wa» Which induces the action of RIi(Z/p"Z)
on X(p",e).

12.5. Local description. — Let Spf R < X(p", €) be a Zariski open subset such that
we have w’éwd\gpf r = Rwi ® Rws where wy lifts a basis of Fil“®" and wso lifts HT (ey).
Over Spf R, &E:{e w18 identified with the set

1 0 »
<pwgB(0’ l)R 1) X (1 +p %(07 1)R)
with 98(0,1)r = Spf R(X). We associate to the universal matrix
1 0 w’ y!
(o §)x@+px)
mod

the flag Filwg?"d = w1 + p*Xws and the trivialization p of the quotient Grw°® given by
p(1) = (1 +p*' X').wy.

12.6. Banach sheaves. — We construct in this section formal Banach sheaves of locally
analytic and overconvergent modular forms.
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12.6.1. Formal Banach sheaves. — We recall some definitions taken from [3], def. A.1.1.1.
We let & be an admissible formal scheme. A formal Banach sheaf over G is a family
(§n)n>0 of quasi-coherent sheaves such that :

1. &, is a sheaf of Og/p™-modules,
2. §, is flat over O/p",
3. For all 0 < m < n, we have compatible isomorphisms §, ®o O/p™ ~ §p,.

We can associate to (), a sheaf § over & equal to the inverse limit lim, §, (the
maps in the inverse limit are those provided by 3) above). The sheaf § clearly determines
the (F,) and we identify § and the family (§,) in the sequel. We say that a Banach sheaf
is flat if §, is a flat O /p"-module for all n.

12.6.2. Formal Banach sheaf of overconvergent modular forms. — Let € €]0,n — p%l] nQ
and 0 < w’ < w < € be rational numbers. Let A be an object of Nadm. We assume that
we are given a continuous character x4 : Z; — A* which is w’-analytic in the sense that
it extends to a pairing K4 : T, X Spf A — Gyy,.

We have a series of affine maps

T Fer

T,€,W,W

b= Fnew — X", €).

Let m; : &

meww $Ln,e,w- This map is a torsor under ‘I?U,. We define an invertible
sheaf

SHA = ((Wl)*ﬁggﬁ- I®OA)T?U/

n,€,W,w

over §&, cw X Spf A. The invariants are taken with respect to the diagonal action of T?U,.

Remark 12.6.2.1. — The sheaf £%4 does not depend on w’ for if we choose w” € [w', w],
we can view k4 as a character of ‘Z?U,, and perform a similar construction as above with
S, e,ww- This will give an invertible sheaf canonically isomorphic to £74. The isomor-
phism is deduced from the natural map F& . — FLer ,, equivariant for the map

,€,W, W ,€,W,W
0 0
70, 530,

Let m2 : §&p e0 — X(p™, €). We define a formal Banach sheaf
BN = (79),L74
over X(p™, €) x SpfA.

Lemma 12.6.2.1. — The formal Banach sheaf &4 s flat.

+

Proof. Using a covering as in section 12.5, Sﬁn’e’w’w,

matrices

|spf r is identified with the set of

<p%<1o, D ?) < (149" B(0,1)).

The action of TV is on the right term. It follows that &4 (Spf R x Spf A) ~ ROA(X).
O

Lemma 12.6.2.2. — Fori € {2,3}, the restriction of the quasi-coherent sheaf %A% /p*
to X(p", €, ;) is an inductive limit of coherent sheaves which are extensions of the sheaf

ﬁ%(p",e,ei)/pw-
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Proof. Over X(p",€,e;), the vectors HT(e;), HT(e4) are a basis of (w@°?).. We are
therefore in a situation similar to [3], main construction, section 4.5. The claim follows
from corollary 8.1.5.4 and corollary 8.1.6.4 of [3].
O
We let 73 : X(p™,€) — Xk (p™, €) be the finite projection. The sheaf (73),&"4% is
Twn-equivariant. We define a Banach sheaf

SHA,UJ — ((Wg)*ﬁﬁA,w)(zw,n _ (ﬂ*ﬁ3£+ ®A)Tw,n

n,e,w,w’

over X (p", €) x Spf A.

12.7. Analytic geometry. — The aim of this section is to translate some of our con-
structions in the setting of analytic adic spaces. One of the improvements in the analytic
setting is that the constructions can be performed for Klingen type level structure rather
than full level structure. It will be natural to work with Klingen level structure when we
consider Hecke operators.

12.7.1. Siegel analytic spaces. — We have an action of GSpy(Z/p"Z) on X(p"). We
denote by Xk;(p™) the quotient of this space by the group R(Z/p"Z) C GSp,(Z/p"Z) of
matrices which are upper triangular with blocks of size 1 x 1, 2 x 2 and 1 x 1.

Let 8i(Z/p"Z)™ be the subgroup of elements whose lower diagonal entry is trivial.
This is a normal subgroup of &l(Z/p"Z) and the quotient K(Z/p"Z)/RU(Z/p"Z)™T is
isomorphic to (Z/p"Z)*. We let Xg;(p™)™ be the quotient of X (p™) by this group.

For all € € [0,n — ]ﬁ] N Q, we denote by X(p™,¢€) the analytic space associated
to X(p",e). This is an open subset of X' (p") stabilized by the action of the Klingen
parabolic RI(Z/p"Z) C GSpy(Z/p™Z) on this space. We denote by Xg;(p",€) C Xkui(p")
the quotient of X (p™,€) by KH(Z/p") and by Xgy;(p™ €)™ C Xku(p™)" the quotient of
X(p",€) by RG(Z/p™)T. We therefore have diagrams for all n € Z>1 :

Xri(p™ €) X (p™)

| i

~he) — Xiulp

n—l)

and

Xrpi(p)*

l |

Xrii(p 1 e)t —— X (p™ 1) T

Over X we define a sheaf ngOd’Jr of O-modules for the étale topology. This is the
subsheaf of the sheaf wzg of integral differential forms at the origin of G, generated by the
image of the Hodge-Tate period map (compare with section 12.2.1).

Remark 12.7.1.1. — The sheaf wgwd’+ is really a sheaf on the étale site and does not
come from the analytic site. Nevertheless, its pullback to X(p") for n > 1 (or n > 2 for
p = 2) comes from a sheaf on the Zariski site.

The space Xg;;(p", €) has the following simple modular interpretation. It parametrizes
pairs (x, H,) where z is a point of X and H,, C G,[p"] is a finite flat group scheme locally
isomorphic to Z/p™Z, which is locally for the étale topology generated by an element e;

which satisfies HT(e;) = 0 in wgfd’+/pew8”fd’+-
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We can define sheaves for the étale topology

Fil*" = Im(HT ® 1 : Hy¥ ® 07,

d,+
Xrc1i(p™ e o )e)

) (we
and
d,+
Gr™ = coker(HT ® 1 Hy @ OF o = (Wi ™ )e).-
These are locally free sheaves of ﬁj{ .
Kll(p ,€
and section 12.2.3).
The space Xx;(p",€)" — Xxu(p", €) is the torsor of trivializations of HP. We let

Y : Z/p"Z — HP be the universal trivialization.
Over Xgy;(p™, )t we have a canonical isomorphism

HT1®@1:Z/p"Z® (O, (o)

obtained via the map 1) and the Hodge-Tate map for G[p"] (compare with section 12.2.3).

)/ p-modules (compare with section 12.2.2

can
€

e — Gr

Remark 12.7.1.2. — We have obtained the analogue of paragraphs 12.2.2 and 12.2.3
in the analytic setting. We observe that in the analytic setting we are able to work
at the level of Xgy;(p", €) rather than X (p™,€). The main reason being that the map
X(p",€) = Xk (p™, €) is finite flat and étale away from the boundary while this fails for
the map X(p",¢) — Xkiui(p™, €). It will turn out to be more natural later when we want
to define the action of the Hecke operator U to work at “Klingen” level.

12.7.2. Analytic flag varieties. — We let FLT

,€,W,W
_l’_

n,e,w,w’ "

s = FLpcw — X(p", €) be the analytic
spaces associated to §£,, ¢, and F£

Lemma 12.7.2.1. — The space FLy ¢ descends to an open-subspace of the flag variety
FL — Xgi(p™, €) of wg (A7) that we denote by FLKlinew- This is the space of flags
Filwg C wg such that locally for the étale topology (Filwg N ngd’+)w = Filg™.

Proof. Consider the map of analytic spaces : X (p",€) Xy, (pn,e) FL — FL. This map is
finite flat. Moreover, F Ly, ¢ < X (p", €) X Xyes(pr,e) F £ 18 an admissible open subset. We
can therefore apply the descent of admissible opens of [16], lem. 4.2.4. O

Let us denote by FLT — Xgui(p",e1)™ the moduli space of flags (a locally direct
summand of rank 1 in this case) Filwg of wg together with a trivialization p € Grwg =

wa/Filwg 19,
Lemma 12.7.2.2. — The space fﬁ:eww, descends to an open-subspace of FLT —
X (p",e1)t that we denote by ]:‘c}r(lineww" This is the space of flags Filwg C wq

and trivialization p € Gry,, which satisfy the following conditions :
— (Filwg Nwiob™),, = Filgn

w
— The trivialization p belongs to ngd’+/(File ﬂngd’Jr) and reduces to the element
HTy(1) of Gr&i".

Proof. This is another application of [16], lem. 4.2.4. O

Let us denote by T, Tu?,, Tw' n the analytic fibers of T,s and T?U, and T,y ,. We
denote by £"4 the invertible sheaf over FL,, (., x Spa(A[l/p], A) associated to £"4. We
denote by ¢4 the Banach sheaf generic fiber of %4 over X (p™,¢€) x Spa(A[l/p], A)

(see [3], def. A.2.1.2 and prop. A.2.2.3). We finally denote by .#%4" the Banach sheaf

17. This flag variety is simply a P!-bundle.
18. p is a nowhere vanishing section of the line bundle Gr(we).
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associated to F*4" over Xk (p",€) x Spa(A[l/p], A). A more direct definition of .F"4:"
is the following

,37'“’“] — ( ﬁ]:,c+ ®A)7;v/ n

Kli,n,e,w,w’

where 7 : FL}, , — Xk (p™, €) is the projection.

Klin,e,w,w

12.8. Overconvergent cohomology. — We are now ready to define overconvergent,
locally analytic cohomology.

12.8.1. Definitions. — The (n,e€)-overconvergent, w-analytic cohomology of weight
(ka,r) is the cohomology :

C(n,e,w, ka,1r) = RO( Xk (p" €), FH4Y @ wh).
There is also a cuspidal version :
Ceusp(n, €, w, k4,7) := RI'( Xk (p", €), F4" @ W"(—D)).

There are obvious maps C(n,e,w,k,7) — C(ny, e, wi, k,r) for ny > n, € > ¢,
w1zw(andwge,wlgel,egn—m,qgm—pil).
We may define the overconvergent, locally analytic degree i cohomology of weight

(ka,T) to be

HZ(T’ KA,T) = COhmn,e,waooHi(XKli(pn; €),F M @w")

and similarly for the cuspidal version :

cusp(T KA, T )_ COhmn,E,WHOOHi(XKli(pn)6)7 Frat @w" ( D))

12.8.2. Another interpretation. — Here is another way to think about these cohomology
groups in terms of coherent cohomology. Thanks to section 12.5, we observe that F L, ¢
is locally affine over X' (p™,€) : this means that there is a covering of X (p”,¢) by affinoid
spaces such that the fiber of 7L, ., over each such affinoid is affinoid 1. The sheaf
@4 comes from the line bundle "4 over FL, (., by pushforward via the map m :
FLyew— X" €). Since R¥(m2),£"4 =0 for i > 0, we obtain that

RINX(p",€), 9" 4" @ w") = RI'(FLp e, L™ @w")
and
RI(Xkii(p",€), ™Y @w") = RI(RW(Z/p"Z), RU(F Ly e, L4 @ W")).
Similar statements hold for cuspidal cohomology.

Proposition 12.8.2.1. — The cohomology complexes C(n, €, w, ka, 1) and Ceysp(n, €, W, k4,T)
are represented by bounded complexes of projective Banach A[l/p]-modules.

Proof. We only treat the non-cuspidal version. We take a covering U of FL, . by
affinoids such that the sheaf #%4 is isomorphic to A®pOy over each U € U. Refin-
ing U by adding all the RIi(Z/p™Z)-translates of each opens, we can assume that U is
R(Z/p"Z)-stable. The U-Cech complex of the sheaf £"4 @ w" is a bounded complex
of projective Banach A[l/p]-modules which computes RI'(Xg;(p™, €), 94" @ w"). The
group RI(Z/p"Z) acts on this complex and the direct factor of invariants computes the
cohomology RI'(Xki(p", €), F 4" @ w"). O

19. This does not imply that the fiber of any affinoid is an affinoid, unlike in the case of schemes.
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12.9. Cohomological vanishing. — The main result of this section is a cohomological
vanishing.

Proposition 12.9.1. — The cuspidal overconvergent locally analytic cohomology
Hyysp(ts 54, 7) vanishes for i > 1.

The proof of this proposition follows [3] section 8 closely. The strategy is to compute
this cohomology on the minimal compactification. The cohomological vanishing results
from two facts :

1. that the relative cuspidal cohomology between toroidal and minimal compactifi-
cation vanishes in higher degree,

2. that the pushforward of our overconvergent sheaves to the minimal compactifica-
tion are supported on open subsets that can be covered by two affines.

12.9.1. The minimal compactification. — We let X* be the minimal compactification of
). There is a natural map X(p") — X* and we define X(p")* to be the Stein factorization
of this map. In [63], we proved that the determinant of the Hodge-Tate map :

APHT : A2((Z/p"Z)*) — det wg/p"

descends from X(p") to X(p")*.

In [63] section 1.8 we have introduced a formal scheme X(p")*~"°¢ — X(p™)*. This

space is the normalization of a blow up and it carries a locally free modification det ngd C

det we such that :

2
1. pr-1 detwg C det wg‘)d C detwg,

2. The Hodge-Tate map induces a surjective map :

AHT : A2((Z/p"Z)) @ O (yyemmon — det it /p" 7T,
By the universal property of blow-up and normalization, there is a map X(p")™°% —
X(p™)*~™°% such that the pull back of det wg"d is det of wg"d and the pull back of the
map A2HT : A2((Z/p"Z)*) — det wgwd/pn_z’%l agrees with A? applied to the map HT :
(Z/p"2)" — Wl p" 5T
Let € € [0, n—%}ﬂ@. We let X(p", €)* be the formal scheme where HT'(e;)AHT (e2) =
HT(e;) ANHT(e3) = HT(e1) AHT(e4) =0 mod p°.

Lemma 12.9.1.1. — There is a cartesian diagram :

X(p",¢) x(pn)mod

:{(pn7 6)* }:(pn)*—mod
Proof. It suffices to prove that the condition HT(e;) A HT(e2) = HT(e;) A HT(e3) =
HT(e1) AHT(eq) =0 mod p© is equivalent to the condition HT(e;) = 0 mod p°. The
reverse implication is obvious so let us prove the direct implication. Under the natural
perfect pairing (W) x (W), — (detw@°?),, we have by assumption that HT(e;) is
orthogonal to the entire (w°?), (which is generated by HT(e;), 1 < < 4) so HT(e;) =0

mod p°.
O
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*

We denote X(p™, €, e2)* and X(p", ¢, e3)* the open formal subschemes of X(p",e€)
where the sheaf (det w/?°?). is generated by HT (e4) AHT (e2) and HT (e4) AHT (e3) respec-
tively.

Lemma 12.9.1.2. — We have cartesian diagrams :

:{(pn7 €, ei) - x(pn)mod

| |

X(p"s € et — X(pr) !
for i€ {2,3}.

Proof. This follows from the fact that (w%°?). is generated by HT(e;) and HT(e4) if and
only if HT(es) A HT(e;) generates det(w?).. O

By [71], p. 72 (see also [63], thm. 1.16), there is an integer N such that for alln > N
there is a formal scheme X(p™)*~#7 and a projective map X(p")*~™°? — X(p")*~HT such
that :

1. X(p")*~HT is a normal admissible formal scheme with generic analytic adic fiber
X(pn)*,

2. The invertible sheaf det wg“’d descends to an ample invertible sheaf det wgwd over
:{(pn)*—HT

3. For all € > 0, there is n(e) > N such that for all n > n(e) we have sections
s;; € HO(X(p™)*~HT det wo?) for 1 < i, j < 4 such that s; j; = HT(e;) AHT (e;) €
det wod /pe.

Let € > 0 and let n > n(e). Let us define X(p", ¢,e;)* HT — X(p")*~HT by the
conditions :

— 84 #0,

— 81,5 € p° detwg“l, vVl<j<4.

Lemma 12.9.1.3. — The formal scheme X(p", €,¢;)* 17T is affine and the map
%(pn767 ei)*fmod N %(pn,e, ei)*fHT

is a projective map and is an isomorphism on the generic fiber.

Proof. The open formal subscheme of X(p")*~#7 defined by s;4 # 0 is affine since

det wg“l is ample. Let us denote by A its ring of functions. Observe that det w&”Od is trivial

mod

over Spf A, generated by s; 4. The formal scheme defined by the equation 51 ; € p det w(
is
81’] ;
Spf A( , 1<j<4)
84,4P°

and is again affine. The final claim follows from the obvious equality

%(pnjaei)*fmod _ %(pn)*fmod Xx(pn)*fHT %(pn767 ei)*fHT_
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12.9.2. Vanishing. — A formal Banach sheaf § over an admissible formal scheme & is
small if §; can be written has an inductive limit of coherent sheaves colim;eng1,; with
injective transition maps, and there exists a coherent sheaf ¥ over & such that the quo-
tients §1,j4+1 / §1,; are direct summands of . We now recall a vanishing result of [3], thm.
A1.22:

Theorem 12.9.2.1. — Let G be an admissible formal scheme. Assume that & admits a
projective map & — &' to an affine admissible formal scheme which is an isomorphism of
the associated analytic adic spaces over Spa(C,, O). Let § be a small Banach sheaf over
G. Let 84 be an affine cover of &. Then the Cech complex

Cech(81, F) @0 C,
18 acyclic in positive degree.

We denote by 7 : X(p",e) — X(p",€)* the projection. The following proposition is
the analogue of [3], proposition 8.2.2.4 (see also [51]) :

Proposition 12.9.2.1. — We have the vanishing Riﬂ'*ﬁx(pn’e)(—D) foralli > 1.

Proof. The formal scheme X(p”,€) carries a stratification indexed by a subset of the set
of all Lagrangian locally direct factors W of V = Z*. We are going to describe briefly this
stratification, based on the analogous description of the stratification of %(p”)m"d given in
proposition 4.9 of [63]. The case W = {0} corresponds to the open and dense stratum with
complement the boundary D. This stratum maps isomorphically to its image in X(p", €)*.
We now deal with the case W is one-dimensional. First of all there is a one-dimensional
affine formal scheme Xy (p™, €) constructed as follows. We start with the formal affine
modular curve Xy of some prime-to-p level determined by W and the tame level KP.
Then we can construct a normal formal scheme Xy (p™) and a finite map Xw (p") — Xw
by adding a full level structure of level p™. We then perform a blow up and a normalization
to define Xy (p™)™°% which carries a locally free modification of the conormal sheaf of the
universal elliptic curve. We finally consider a formal scheme Xy (p™,¢) — Xy (p")™?
which is an open subscheme of a blow up defined by a condition on the Hodge-Tate period
map.
Over Xy (p™,€) we have an elliptic curve By (p™,€) — X (p™,€), isogenous to the
universal elliptic curve. There is a Gy,-torsor My (p",€) — Bw (p™, €) isogenous to the
torsor of trivializations of 0wy, (,n ) (—20) (Where O is the identity section of the elliptic
curve) and a relative toroidal embedding My (p™, €) < My (p", €) (obtained by adjoining
to the G,,-torsor the 0 element). The complement of My (p”,€) — My (p”, €) maps
isomorphically to By (p™, €). The W-stratum in X(p", €) is By (p™, €) and the completion
of X(p", €) along By (p™, €) is isomorphic to the completion of My (p", €) along By (p™, €).

The morphism 7 restricts to a morphism By (p™, €) — X(p™, €)* and factors through
By (p",€) — Xw(p™, e) — X(p", €)* where Xy (p",e) — X(p™,€)* is finite (compare with
[63], lem. 4.4 and thm. 4.7).

In the case W is two dimensional, the boundary component is included in the or-
dinary locus and the maps X(p",¢) — X(p")™°? — X(p") restrict on the ordinary locus
respectively to an open immersion and an isomorphism. The description of the boundary
component is given in [63], thm 4.1. We recall that there is a formal torus Ty isogenous
to the p-adic completion of Hom(Sym?V/W+,G,,), a Ty -torsor My (p", €), a relative
toroidal embedding My (p™, €) — M (p", €), a closed codimension 1 formal subscheme
3w (p™, €) — My (p", €) in the complement of My (p™, €) and an arithmetic subgroup Ty
of GL(W) such that the closed W-stratum is isomorphic to 3w (p",€)/I'w and the com-
pletion of X(p", €) along 3w (p™, €)/Tw is isomorphic to the completion of My (p™, €)/Tw
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along 3w (p",€)/Tw. Lastly, the image of 3y (p™, €)/T'w in X(p™, €)* is a closed formal
subscheme, finite over Spf O.
By the theorem on formal functions, the vanishing theorem is equivalent to :
1. H{(Ow (p", €)/Tw, ﬁﬁw(pn,e)/rw(_sw(pnv6)/PW)) =0 for all « > 0 and W two
dimensional,
L x
2. H'(Mw (p™,€) » Oz (o) (—Bw (P, €)) for all @ > M or;e—dimensional, x €
Xw(p", €) a closed point. We have denoted by My (p™,€) the completion of
. x
My (p", e) along the fiber of the map By (p™, €) — Xw(p", €) at .

We are therefore in a similar situation to [3], proposition 8.2.2.4, or to [51], sect. 4.

One can conclude by repeating the arguments of these papers.
O

Lemma 12.9.2.1. — Let ¢ > 0. There exists n(e) such that for all n > n(e),
RI'(X(p",€), 9" 4" @ w"(—D)) is concentrated in degree 0 and 1.

Proof. We let 7 : X(p™,€) — X(p™, €)* denote the usual projection. By lemma 12.6.2.2,
proposition 12.9.2.1 and proposition A.1.3.1 of [3], m,B&"4" @ w"(—D) is a small formal
Banach sheaf over X(p", €)* and Rim, "4 @ w"(—D) = 0 for all i > 0.
Let us take an affine covering U; of X(p™,¢€,e;)* and an affine covering &; of
FLn,cwlx(pn e,e)+ Which refines the inverse image of ; in FL,, cwlx(pn ee,)+ for i € {2,3}.
Since Rim, &"4% @ w"(—D) = 0 for all i > 0 we deduce that the map

Cech(U;, m,&"4% @ w"(—D)) — Cech(;, £ @ w"(—D))
is a quasi-isomorphism.

We deduce from thm 12.9.2.1 that Cech(4l;, £54 ®w"(—D))[1/p] is concentrated in de-
gree 0. We now consider the Cech complex associated to the covering 4 = s Uz of FL,, o
for the sheaf £%4(—D)). Then Cech(i, £4 @ w"(—D))[1/p] computes RT(F Ly ¢ 10, L4 @
w"(—=D)). But this Cech complex is quasi-isomorphic to the complex:

HO(X (0", €, e2)*, %™ @ W™ (—D)) ® HY(X (p", €, e3)*, TG "4 @ w" (D))

— HO(X(pna €, 62)* N X(pnv €, 63)*7 7T*gqﬁA @ wr(_D))

and has therefore cohomology in degree 0 and 1.
O]

Corollary 12.9.2.1. — Let ¢ > 0. There exists n(e) such that for all n > n(e),
RI(Xk1i(p™, €), F 4" @ w"(—D)) is concentrated in degree 0 and 1.

Proof. This follows from the formula

HY (Xk(p", €), F4Y @ W' (—D)) = HY(RG(Z/p™), H(X (p", €), 4" @ w"(—D))).

13. Finite slope families

In this section we will apply Coleman’s spectral theory to our overconvergent coho-
mology in order to construct finite slope families.

13.1. Review of spectral theory. — We quickly review the notion of slope decompo-
sition and the construction of spectral varieties.
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18.1.1. Slope decomposition. — The valuation on Q,, is normalized by v(p) = 1 as usual.
Let k be a complete non-archimedean field extension of Q, for a valuation extending the
p-adic valuation. Let M be a vector space over k and let U be an endomorphism of the
vector space M. Let h € Q. A h-slope decomposition of M with respect to U is a direct
sum decomposition of k-vector spaces M = M=" @ M>" such that:

1. M=h and M>" are stable under the action of U.
2. M=" is finite dimensional over k.

3. All the eigenvalues (in an algebraic closure of k) of U acting on M<" are of
valuation less or equal to h.

4. For any polynomial ) with roots of valuation strictly greater than h, the restriction
of Q*(U) to M>" is an invertible endomorphism. Here Q* is the reciprocal of Q.

By [81], coro. 2.3.3, if such a slope decomposition exists, it is unique. If M has h-slope
decomposition for all h € Q, we simply say that M has slope decomposition. In this
situation we can obviously define submodules M=" and M <" of M for all h € Q.

13.1.2. Spectral varieties. — Let A be a Tate algebra over k. We let Ban(A) be the
category of Banach modules over A. A Banach module is called projective if it is a direct
factor of an orthonormalizable Banach module. We let KP™/(A) be the category whose
objects are bounded complexes of projective Banach modules over A and morphisms are
homotopy classes of morphisms of complexes. Let M® € KP/(A). An element U €
Endgproj(4)(M*®) is compact if it has a representative U € End4(M*) whose restriction to
each M* is compact.

Given a compact representative U, we can define by [14], Part A, (or [9]) the charac-
teristic series P(X) = det(1 — XU|M*®) =[], det(1 — XU|M¥). This characteristic series
is entire: it defines a function on A' x Spa(A4, AT). We denote by Z < A® x Spa(A4, A™)
the spectral variety which is the closed subspace defined by I5(X ). It depends on U. Over
Z we have a complex of coherent sheaves M®. It is the universal eigenspace of M*® for the
action of U. There is a covering of Z by opens U which are finite over their image V in
Spa(A, AT) and such that M®|y is a perfect complex of &p-module.

The cohomology groups H®(M?®) are coherent sheaves over Z. Let S C Oz be
the annihilator of this graded module. We let Z = V(.#) C Z be the spectral variety
associated to U and M®. It does not depend on the choice of U. It comes equipped with
a graded coherent sheaf H®(M?*).

18.1.8. Euler characteristic. — Let M*® be a complex of Banach modules and U be a
compact operator as above. If z : Spa(K,Og) — Spa(A, AT) is a rank one point, it
follows from [72] that the space H*(M?) has a slope decomposition (the valuation v
corresponding to z is normalized by v, (p) = 1). We have :

Proposition 13.1.3.1. — For all h € Q, the Fuler-characteristic function

z Y (=1)' dim H'(Mp)="
is a locally constant function of the rank one points of Spa(A, A*) (20,

20. This means that for any rank one point z, there exists a neighborhood U, of = in Spa(A, A1), such
that for all rank one point y € Uy, we have >_,(—1)" dim H*(M2)=" = 3",(—1)" dim H*(MJ)=". Be careful
that {Us},cspa(a, a+), rk(z)=1 18 Ot a covering Spa(A4, A*) in general.
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Proof. This follows from the equality

D (=1 dim H (M) =) "(~1)" dim(M;)="

7 %

and the local constancy of dim(M?)=" (see [14], Part A). O

13.2. The U-operator on overconvergent cohomology. — We construct the U-
operator in the setting of overconvergent cohomology. The construction is parallel to
section 10.

13.2.1. The cohomological correspondence C. — Let Vg;(p™) be the open subspace of
Xk (p™) where the semi-abelian scheme is an abelian scheme. There is a Hecke corre-
spondence t1 : Cly,. ) — Viu(p") where Cly, . ) is the moduli space of (G, Hy, L)
where (G, Hy,) is a point of Vk;(p") and L C G[p?] is a totally isotropic subgroup which
is locally for the étale topology isomorphic to (Z/pZ)? @ Z/p*Z and L N H, = {0}. The
map t sends (G, Hp, L) to (G, H). There is a map t2 : Cply,,,(m) = Vi (p™t1) defined
by mapping (G, H,, L) to (G/L,p~ H, + L/L).

By the theory of toroidal compactification (see [48] for instance), there exist a polyhe-
dral cone decompositions ¥’ and toroidal compactifications of C| Yicu(pr) Which we denote
by Csy or simply C and maps t; : Csy — Xgp(p™)s and to : Csr — Xg;(p"1)s which
extend the maps t; and to previously defined. We drop X and Y’ from the notations if not
necessary. We also recall that the map (¢1),0c — R(t1)«0¢ is a quasi-isomorphism.

Lemma 13.2.1.1. — Let C. = C Xy x,,,(pm) Xk1i(p",€). Then Ce factorizes to a corre-
spondence

Ce
Xrii(p"t e+ 1) Xri(p™ €)

Proof. All adic spaces are topologically of finite type, so it is enough to check that the
map to has the expected factorization for rank one points. Let (K, Of) be a rank one
point of C), corresponding to an isogeny & : G — Gjp. Let K be the completion of an
algebraic closure of K. Over O 7 We have a commutative diagram (where T}, is the Tate
module and HT is the Hodge-Tate map) :

T)(G) — > T,(Gh)

o

D
mod,+ 1 mod,+
el ~Wa,

In case G and G are semi-abelian scheme, one can interpret T,,(G) and T,(G1) as
the Tate modules of the corresponding 1-motives. We take a basis of T),(G) ~ Zﬁ and
T,(G1) ~ Zj lifting the basis of G[p"] and G1[p"] provided by the moduli problems. For
suitable basis of wg and wg, respecting the canonical filtration, this diagram is isomorphic
to
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74 [Lp.p.p?]
P ~Sp

ipl ipz
[p.p?]

02 s 0%
K K

Z4

where [1,p, p, p?] and [p, p?] represent diagonal matrices. Moreover, by definition p;(e1) €
pEO%. We deduce at once that the group generated by the image [1, p, p, p?](e1) in Gy [p"!]

is independent of choices and that pa([1, p, p, p?](e1)) € pepO%. Therefore, at the level of
points, we have proved that to(C,) factors through X (p"t!, e + 1).
O

13.2.2. Action on the sheaf. — In this section we prove that for all positive rational w < e
we can define over the correspondence C, a natural map:

(T ATy g T,

Over the correspondence C¢ we consider the universal isogeny £ : G — G and its dif-
ferential £* : wg, — wg. Therefore we get a map 7 FL — t53FL obtained by Filwg —
(€*) 1 Filwg.

Lemma 13.2.2.1. — The map t1FL — t5F L restricts to a map
t){fEKli,n,e,w — tgfﬁKli,nJrl,eJrl,erl-

Proof. It is enough to check this on rank one points. Let (K, O) be a rank one point of
C. corresponding to an isogeny & : G — G1. As in the proof of lemma 13.2.1.1, we obtain
over O i@ commutative diagram :

T)(G) — > T, (Gh)

lHT lHT
wgnod,+ I3 wmod,+

G1

isomorphic to

74 [1,p,p,p°]
p 5

Let Filw°? be a flag. We may assume that it is generated by a vector HT (e2) +ap”HT (e4)
with o € Op (up to changing es and e3). Its image via &P is the line generated by
pHT (e2) + ap¥p?HT(eq) or equivalently HT (e2) + ap® 1 HT (e4). O

Corollary 13.2.2.1. — We have a map £* : t5.F 4w+l prgraw,

Proof. Let Spa(R,R") — C. be a point. Let & : G — G; be the associated
isogeny. To (Filwg,pe @ R ~ Gr(wg) = we/Filwg) € FLiu . cww WE aSSO-

ciate (¢*)"'Filwg and a trivialization (6*)"!pg : R ~ Gr(wg) =~ Gr(wg,). This

) . + - I * kA1 .
defines a point on FLyy 1 vy i1, Glven a section s € 3.7 , we set

&*s(Filwg, pg) = s((€*) " 1Filwg, (£*) " 1pq). O
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18.2.83. The action of U on overconvergent cohomology. — We now get an operator U as
the composite

RT (X (p", €), Fr4Y@uw") — RO (X (p" T, e4-1), FravTlow™) — RI(C,, th.F 54w Tl gun)
o€ LTr

s RF(Ce,t’fﬁﬁA’w(@wr) — RF(XKli(pn,E), (tl)*t’fﬁ’i‘q’w(@wr) pS—) RF(XK”(pn,G) FrAY R0 )
and similarly on cuspidal cohomology. The map £* is the tensor product of the map of
corollary 13.2.2.1 and the obvious map tjw" — tjw"

Remark 13.2.3.1. — Note the normalization of the map £* and of the Trace map.
13.2.4. Compactness. — We prove the compactness of the operator U.

Lemma 13.2.4.1. — The natural map
RI(Xgi(p™, €), F54Y @ w") — RL (X (p"Th e + 1), Fravtl @ W)
is compact. A similar statement holds for cuspidal cohomology.

Proof. We have an obvious injective map FLp11 e41,w+1 — X(pth) Xxpr) FLnew- All
these spaces are open subspaces of the the proper analytic spaces FL£ which parametrizes
flags in wg over X (p"*1). It follows from the definitions that the closure of F Lyt1,e41,w4+1
is contained in X' (p"*1!) X x(pm) FLn,ew-

Let U = {U; }icr be an affinoid covering of FLy 41 e+1,0+1. We may assume that this
covering is stable under the action of K1i(Z/p"*1Z). By [52], thm. 5.1, for each U; € U we
can find an affinoid open U] C X (p™th) X Xers(pr) F Ln,ew such that U; C U!. We may
refine {U!} by adding all translates under the action of Ri(Z/p""'Z) so we can suppose
that U’ = {U]} is stable under the action of RH(Z/p"Z). We let T = U;U’;.

The cohomology RI'(T, £*4®@w") is represented by the Cech complex Cech(U’, L4 ®
w"). Similarly, the cohomology RI'(FLy11,e4+1,w+1,-L"4 @ w") is represented by the Cech
complex Cech(U, %4 ® w"). The map Cech(U', L*4 @ w") — Cech(U, L4 @ w") is
compact. It follows that the map of the proposition is compact as it can be factored into :

RE(Xkii(p*,€), F4" @ w") — (Cech(U, £ ®wr))ﬁ‘i(2/p"“z)

R/li(z/p"T1z)

— (Cech(u,Z“A ®wr)) — RI"(XK”( n+1 e+ 1) O“HA7’UJ+1 Q@ w )

Corollary 13.2.4.1. — The operator U is compact.

Proof. It is the composition of several continuous maps and one of the maps is compact.
O

Corollary 13.2.4.2. — The restriction maps C(n,e,w,ka,7) — C(n', e, w' ka,7r) for
n' >n, € > e, w > w induces an isomorphism on the finite slope part for U. A similar
statement holds for cuspidal cohomology.

Proof. Without loss of generality, we can assume that n’ <n+1, w' <w+1, € <e+1.
The map U : H'(C(n/, €, v, ka,7)) = H(C(n',€,w', ka,r)) factors canonically into

H{(C(n/, e, v, ka,T)) LA HY(C(n,e,w,ka,7)) = H(CW, 0 ka,7)),
where the second map is the obvious restriction map. Given a finite slope class
f e H(C(n',€',w' ka,r)), there is by definition (locally on A) a non-zero polynomial
P(X) € A[X] with P(0) = 0 such that f = P(U)f. We define the extension of f to
H(C(n,e,w,k4,7)) to be P(U)f. This provides a map ext : H'(C(n/, €, w', ka,7))/* —
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HY(C(n, e, w, k4,7)) on finite slope classes. It is clear that extores = Id and resoext = Id
on finite slope classes. O

Remark 13.2.4.1. — This corollary allows us to identify finite slope cohomology classes
in H*(f, k4, 7) with classes of prescribed radius of convergence and analyticity.

Remark 13.2.4.2. — One proves in a similar way that U acts compactly on RT'(Xg;(p™, €), Q%))
and R (X (p", €), Q%7 (=D)).

13.3. Classicity at the level of the sheaf. — Let (k,7) € Z>0 X Z>o. There is a
natural map going from (n, €)-overconvergent cohomology of the classical sheaf to (n,€)-
overconvergent, w-analytic cohomology :

R (X (p" €), QF)) — RO (X (" €), F ) @ wh,

and similarly for cuspidal cohomology. The goal of this section is to prove that on the
small slope part, this map is a quasi-isomorphism.

153.8.1. Slopes. — The aim of this paragraph is to bound the possible slopes for U on
overconvergent cohomology.

Proposition 13.3.1.1. — Let k : Z; — O™ be a w-analytic character. The operator U

has slopes > —3 on H'(f, K, 7) or Hiusp(T, k,1) for alli. Moreover, on degree 0 cohomology,
it has slopes > 0.

Proof. The Banach sheaf 7" is a subsheaf of the structural sheaf Or, 5 and we
let Z%5% T+ be the sheaf F5% N ﬁ;;mi’w,w’w/ (we recall that the Superscr’ipyt’ —i—+ stands
for topologically nilpotent sections).
The map
tggn,uﬂrl N t{yn,w

arises from a map of spaces

ti(fﬁKli,n,e,w — tgfﬁKli,n+1,e+1,w+1
therefore, it respects the integral structure and induces a map :

ty.Frwtlt gy et

Next, the differential of the universal isogeny induces &* : tjw” — tjw" and factors
through & : t3(w™*)" — p't1(w*™)" by lemma 14.3.1, 2 (1) By proposition 14.4.1.1 (22)
we have that Rz(tl)*ﬁgj = (tl)*ﬁgj = 0 for all ¢ > 0. Finally, the trace map Tr :
(t1)xOc, = Oxpy(pne) Testricts to Tr : (tl)*ﬁgj — ﬁ;\,t;p(p" o Therefore there is a map
p3U : R (Xkp(p™ €), Fravtt @ (wh ") — RT(Xgpu(p", €), Frawtt @ (wt)") fitting
in the commutative diagram :

p’U

RI(Xkii(p™, €), F5* @ w") RI(Xkii(p™,€), F* @w")

! |

RF(XKZ’L (pna 6)) gmwﬁ"’— @ (w++)T) - RF(XKlz(pna 6)5 ymwﬂ"‘r ® (w++)7”)

21. We use a result that is only proved in the next section. The reader can check that the proof of
lemma 14.3.1 is completely self-contained and independent of any other result of this paper.

22. We again use a result that is only proved in the next section, the proof of this proposition depends
only on results obtained in section 3.4, so there is no circularity in our arguments.
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We now consider an affinoid covering U of Xk;(p™, €) (chosen such that for all U € U, one
has FLKlin.ew is affinoid). The Cech complex C* associated to U of the sheaf F"* ® w"
computes the cohomology RI'(Xgy;(p",€), #"* @ w"). This is a bounded complex of
Banach spaces and we can lift the U operator to a compact endomorphism U of C* by
lemma 13.2.4.1. Let a be rational number and let (C*®)=% be the associated direct factor
of C* computing the slope a cohomology. This is a perfect complex of C, vector spaces
and the projection C* — (C*)=% is continuous. We now consider the Cech complex C'*++
of the sheaf ZF"" "+ @ (w™*)" for the covering U. This is a subcomplex of C* of open and
bounded O-modules. Its image (C**)=% under the continuous projection C* — (C*)=°
is again open and bounded. Therefore, the image of H (C'**T) in H/(C*®)=% is bounded.
We consider the compositions of maps :

Hi(Co,++) N Hi(XKli(pn, 6), g;n,wd»Jr ® (w++)7‘) N HZ(CO) — :[_I'L'(CvO):a7

where the first map is the map from Cech cohomology with respect to the covering U to
cohomology, the second map is the functorial map between cohomology groups associated
to the map of sheaves FHW T+ @ (W) — FHY@w", and the last map is the continuous
projection to the slope a cohomology.

We now deduce from lemma 3.2.2 that the map

HY(C* ) = HY( Xk (p" €), FH9TT @ (w7
has kernel and co-kernel of bounded p-torsion. It follows that the image of
H (Xgu(p", €), FH T @ (whh)7)

in H(C*)=® is open and bounded. It follows that in H'(C*®*)=%, the operator p*U stabilizes
an open and bounded submodule. Therefore, we deduce that a +3 > 0.

On degree 0 cohomology we can argue a bit differently and improve on the result.
It follows from the construction that the cohomology HY(f, x,7) embeds in the module of
p-adic modular forms of weight (k,r) tensored with C (see definition 4.3 in [60]). The
claim follows from the fact that our U-operator stabilizes the integral structure on p-adic
modular forms. In more down to earth terms, we have a g¢-expansion map for p-adic
modular forms, and the U-operator preserves integrality on g-expansions (see [34]). [

Remark 13.3.1.1. — Although we believe only non-negative slopes can occur in all co-
homological degree, it is difficult to improve the above argument. The reason is that the
trace map is normalized by a factor p~3. This normalization does not preserve integrality
in general.

13.3.2. Classicity for the sheaf. — For all (k,r) € Z>o x Z we have a classical sheaf Qkr),

Lemma 13.3.2.1. — There is a canonical map of sheaves over Xg;(p",€) :

Q) s Fhw g,

Proof. Remark that Q*7) = Q*0) @ " It suffices to construct the map for r = 0.
Let FL — Xki;(p™, €) be the analytic flag variety parametrizing flags Filwg C wg. Let
FLT — FL be the Gy,-torsor parametrizing trivializations of Gr(wg). We denote by
f @ FLY = Xgu(p",€) the structural map. Then by definition Q*:0) = [« Oxp+[—K]
where [—k] means the subsheaf of f,0r,+ where G,, acts via the character —k. There

is an obvious map ¢ : fﬁ: cww FLT, equivariant for the action of T, on the left
and G, on the right (under the map 7., — G,,). Taking the —k invariants part of
i Oppt — Oppt provides a map

Klin,e,aw,w’

QKO < gk
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O]

For the next proposition, we shall denote .Z*®" the inductive limit colim,, <y, # k'
Proposition 13.3.2.1. — Let (k,r) be an algebraic weight. Then we have an exact se-
quence over Xgi(p",€) :

0 s Qi) . gha g r dy Foi-ku” g kit

Proof. See [3], prop. 7.2.1. This is a relative version of the locally analytic BGG
resolution. We note that in [3] there is the minor error that the proposition is given for a
fixed w, without taking the colimit colim,, ,,. The colimit is necessary because integration
changes the radius of convergence. O

We let C'(n,e,w™, k,r) = colimys«,C(n, e, w, k,r).
Corollary 13.3.2.1. — There is an exact triangle :
RIT (X ki (p",€), Q(k’r)) — C(n,e,w™  k,r) = C(n,e,w,—2—k,k+r+1) +
A similar statement holds for cuspidal cohomology.

13.8.3. Equivariance of the BGG resolution. — We will now prove that certain (n,€)-
overconvergent and w-analytic cohomology classes are in fact (n, €)-overconvergent coho-
mology classes of a classical sheaf.

Proposition 13.3.3.1. — The following diagram is commutative:

U

RF(XKli(pn7€)79k’w7 ®w7") RF(XKli(pn7€)7yk’w7 ®w7")

! !

k—1

R (Xgy(ph,€), F 270w @ wk”*l)p;gRF(XK”(pn’ ¢), F2kwT g htril)
Proof. See [3], prop. 7.2.3. O
Corollary 13.3.3.1. — 1. The maps

Hi(XKli(pn7 6), Q(k’,r))<k—2 N Hi(XKli(pn, €>7 yk,w ® wr)<k—2
and
H (Xgeii(p", €), Q57 (= D)) 72 — HY Xy (p" ), FH @ 7 (=D))< 2
are isomorphisms.
2. The maps
HO (X (07, €). Q(k,r))<k+1 s HO(Xgis(p", ), FFv @ wr)<k+1
and
H(Xiesi (p", €), Q%7 (=D))< — HO(Xs(p™, €), FH @ W' (=D))<
are isomorphisms.
3. The maps
H' (Xgei(p", €), QP )< HY (X (p", ), FF @ w) <F 1
and
HY (X (0, €), Q(k,r)(_D>)<k+l s HY(Xgis(p", €), FF @ w' (= D)) <k+1

are injective.
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Proof. This follows from proposition 13.3.1.1, proposition 13.3.3.1, and corollary 13.3.2.1.
O

13.4. The spectral variety. — Let W = Spa(A, A) xSpa(C,, O) be the analytic weight
space in characteristic zero where we recall that A = Z[[Z)]] is the one-dimensional
Iwasawa algebra. We can write ¥V as an increasing union of affinoids Spa(A4;[1/p], 4;).
We let k4, : Z); — A[ be the universal character. We can apply the formalism of section
13.1.2 to the cohomology Ceysp(n, €, w, k4,,2) (for, n, €, w large enough) and the compact
U-operator acting on it. We obtain a complex Ceysp(A;) over Spa(A4;[1/p], A;) X Gy, of
finite slope cuspidal overconvergent cohomology of weight (x4,,2) which is concentrated
in degree 0 and 1. We observe that Cgys,(A4;) is independant of n,e,w as the operator
U improves convergence and analyticity (see corollary 13.2.4.2 and the remark below the
proof).

Moreover, for all x : Spa(C,, ©) — Spa(A;[1/p], A;) and a~' € C} providing a point
(k,a™1) : Spa(C,, O) — Spa(Ai[1/p], A1) X Gy, , we have isomorphisms :

HZ((’V”'v a_l)*CCUSP(Al)) = Hzcusp('%’ T)[U = Oé].

The annihilator of H®(Ceusp(A;)) is a coherent ideal %) C Ogpa(a,(1/p],4;)x G, a0d the
associated closed subspace is the spectral variety Z;. The map Z; — Spa(4;[1/p], 4;) is
quasi-finite and locally finite.

For all I, the spectral varieties Z; glue to Z — W and there is a universal graded
coherent module H*(Cyysp) over Z supported in degree 0 and 1.

We deduce the following proposition:

Proposition 13.4.1. — The function defined on Z>o — w (23);
k— dimc HL,, (1, k,2)7° — dimc HY (1, %, 2)7°

cusp cusp

1s locally constant.

Proof. This is a corollary of the discussion above and proposition 13.1.3.1. 0

14. Small slope cohomology classes are classical

The goal of this section is to prove a generalization of Coleman’s classicity crite-
rion that small slope overconvergent modular forms are classical. We shall here work
mainly with a classical sheaf of coefficients Q) or Q(*7)(—D) and prove that restriction
from small slope cohomology classes on Xk;;(p) to small slope overconvergent cohomology
classes over X 1%111 (p) is an isomorphism. That way, we will be able to complete the proof
of theorem 1.1.

14.1. Neighborhoods of the ordinary locus in Xy;(p). — We recall that X (p)
is the analytic Siegel threefold of Klingen level at p. There is a universal chain of isogenies
G — G' = G where G — G’ is a degree p? isogeny and the composition of the two isogenies
is multiplication by p. We let H be the group scheme Ker(G — G)* (the orthogonal is
for the Weil pairing). When G is an abelian scheme, H is a finite flat group scheme of
order p. We let G” = G/H = (G')". We denote by w/, the invertible sheaf of ﬁ;mi(p)

modules of integral differential form at the unit section on G (a similar notation applies
to G”). Let 6y € det wl; ® det™ ' wf, be the determinant of the map wl, — wl induced

23. The set Z>o carries the subspace topology, which is the p-adic topology on each of the residue
classes modulo p — 1 (or modulo 2 if p = 2).
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by the isogeny G — G”. We recall that for all rank 1 point z : Spa(K,Ox) — Xk (p)
with associated valuation v, normalized by v,(p) = 1, we have v, (dg) = deg H, € [0,1]
in the sense of [20] whenever H, is a finite flat group scheme whose schematic closure is
a finite flat subgroup scheme of G over Spf O (this holds when G has good reduction at
x for example).

We let Xkii(p)e C Xiii(p) be the locus where |0g| < |pf|. This is another way to
measure the distance to the p-rank one locus that is more adapted to the arguments of this
part of the work. Before proceeding, we make a comparison with the spaces Xk;(p™,€)
introduced in section 12.7.1.

Lemma 14.1.1. — The natural map Xg;(p", €) — Xki:(p) factorizes through
XKli(p)max{ovlf%(n*Gi’p%l)}'

Proof. It is enough to do the proof for all rank 1 points Spa(K,Ox) — Xki;(p™,€). Let
G — Spec Ok be the corresponding semi-abelian surface. Let H, C G[p"]| be the group
generated by e;. There is a commutative diagram :

0 H, G[p"|
iHTHn iHT
0 WhD LOG/anG

The group wyp is generated by two elements as an Ox-module (because HP can
be embedded in a two dimensional p-divisible group) and the cokernel of HTy, ® 1 :

1
H, ® O — wyp is killed by pr~T by [20], thm. 7. Since the map HT : H,, — wg“’”l/pe is
zero by assumption, we deduce that HT g, (H,,) is killed by p"~ ¢ so that w gp is killed by

1
pPTl—m_e. Since wyp is generated by 2 elements, we deduce that degHP < 2(n—e+ p%l)

The group H, has degree at least n — 2(n — e + Iﬁ) Morover the maps pF~1 :

H,[p*]/H,[p*~'] — H,[p""'] = H; are morphisms which are isomorphisms on the generic
fiber. Therefore, using [20], coro. 3 on p. 13, we deduce that deg H; > %deg H, >
1-2(n—e+ ]ﬁ)

O
Remark 14.1.1. — So in particular, if € = n—zﬁ and n — +oo, 1— %(n—ﬁ— p%l) — 1.
Lemma 14.1.2. — We have Xky;(p)e C Xkui(p, 1 — ]ﬁ) foralle>1— %.
Proof. This is an easy computation using Oort-Tate theory [58]. O

14.2. The correspondences C,,. — Let Vg;(p) be the open subspace of Xk;(p) where
the semi-abelian scheme is an abelian scheme. For all n € N, there is a Hecke correspon-
dence tp1,tp2 : Cn]yK”(p) — Ykii(p) where Cn‘)’mi(p) is the moduli space of (G, H, L,)
where (G,H) € Ykii(p) and L, C G[p"] is a totally isotropic subgroup which is locally
for the étale topology isomorphic to (Z/p"Z)? ® Z/p**Z and L, N H = {0}. The map t, 1
sends (G, H, Ly,) to (G, H). The map t, 2 sends (G, H, L) to (G/Ly,H+ Ly/Ly,). We re-
mark that Cy|y,,.(p) is simply obtained by iterating n times the correspondence C1 |y, ()
(which is the correspondence Cly, . () considered in section 13.2.1).

There exist smooth polyhedral cone decompositions ¥ and Y’ and toroidal com-
pactifications of Cply,.,. () which we denote by Cj s or simply C,, of Vki(p) which
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we denote by Xki(p)y, or simply by Xkii(p), and maps ¢,1 : Ch v — Xgii(p)s and
tn2 : Cpyr — Xiui(p)s which extend the maps ¢, and ¢, 2 previously defined.

14.3. Variation of the degree. — Over C,, we have an isogeny G — G,, with kernel L,,.
The differential of this isogeny provides a map (9, /Cn)+ — (4 /Cn)+ where (Qf, /Cn)+ C
Qén e is the locally free ﬁgﬂ module of integral differentials. Taking the determinant
yields a section 0, € det(QlG/Cn)Jr ® detfl(Qén/Cn)Jr.

When we have a rank one point z : Spa(K, Ox) — Cy, with associated valuation v,

normalized by v, (p) = 1, we can define the degree deg L,, |, = v,(dr, ) where v,(dr,, ) means
the valuation of éz, () computed in any local trivialization of the sheaf det(Q} /CH)Jr ®
det ™! (Qlan /Cn)+' When G|, is an abelian scheme and extends to an abelian scheme & over
Spf Ok, this is also the degree of the schematic closure of L,|, in & defined in [20]. In
general, G|, can be uniformized as the quotient of a semi-abelian scheme G° by a lattice.
The semi-abelian scheme G extends to a semi-abelian scheme &° over Spf Q. In this
case, deg Ly |, = deg Ly,|. N GY.

Lemma 14.3.1. — Let x : Spa(K,Og) — Cy be a rank 1 point corresponding to a triple
(G,H,L = Ly). Then we have :

1. deg H + deg L[p] < 2,

2. deg Llp]/pL = 1,

5. deg L/L[p] < degpL,

4. deg(Glp] + L)/L =1 —deg L/L[p],
5

. deg(G[p] + L)/L > degH. In case of equality, H is either of multiplicative or
étale type.

Proof. It is enough to prove all the points when G is an abelian scheme, by Zariski density.
The first point follows from the fact that there is a morphism which is an isomorphism on
the generic fiber : H x L[p] — G[p] and properties of the degree [20], coro. 3 on p. 13.

Using the lemma below the proof, we deduce that the perfect Weil pairing on G|[p]
induces a perfect pairing between L[p|] and G[p|/pL which restricts to a perfect pairing on
L[p]/pL. As a result L[p]/pL ~ (L[p]/pL)P. We deduce from [20], lem. 4 on p. 12 that
we have deg L[p]/pL + deg L[p]/pL = 2 and it follows that deg L[p]/pL = 1.

The map given by multiplication by p : L/L[p] — pL is a generic isomorphism. It
follows from [20], coro. 3 on p. 13 that deg L/L[p] < degpL.

As before, the perfect Weil pairing on G[p?] induces a pairing between L and G[p?]/L
which restricts to a pairing between (G[p] + L)/L and L/L[p]. It follows that deg(G[p] +
L)/L+degL/L[p] = 1.

The map H — (G[p|+L)/L is a generic isomorphism. As a result, deg H < deg(G[p]+
L)/L. In case of equality, we deduce that H — (G[p] + L)/L is an isomorphism, that
H — GJ[p]/L|p] is also an isomorphism (because we have a factorization H — G[p|/L[p] —
(G[p]+ L)/L), and therefore that the map H @ L[p] — G]p] is an isomorphism. The group
H is a direct factor of a truncated Barsotti-Tate group of level 1, therefore it is a truncated
Barsotti-Tate group of level 1. Since it is of order p, we deduce that H is either of étale
or multiplicative type. O

In the course of the proof of the above lemma, we have used the following easy lemma
whose proof is left to the reader :
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Lemma 14.3.2. — Let J be a finite flat group scheme over O . Let Mg C Jx be a
subgroup and let M be the schematic closure of My . Let M[% be the orthogonal of Mg in
JR. Let M+ be the schematic closure of Mj:. Then JP/M+ = MP.

Corollary 14.3.1. — Let n > 1. Let x : Spa(K,Og) — C, be a rank 1 point corre-
sponding to a triple (G, H, Ly,), let € € R and assume that deg L, < n(3 — 2¢). Then
deg(Glp| + Lyn)/Ly, > e.

Proof. We first give the proof for n = 1 and write L = L. Note that deg L = degpL +
deg L[p]/pL + deg L/L[p|, so that deg L > 1+ 2degL/L[p| (by lemma 14.3.1, point 2
and 3). We deduce that deg L/L[p] < 1 — € and the claim follows from the formula
deg(G[p] + L)/L =1 —deg L/L[p| (lemma 14.3.1, point 4).

We now give the proof for a general n. There is a filtration L1 C Ly C --- C L,, with
L; locally isomorphic to Z/p* @& (Z/p')? and totally isotropic in G[p*]. By elementary
properties of the degree map, there is an index ¢ such that deg(L;/L;—1) < 3 — 2¢. Since
(Glp]+L;)/Li = ((G/Li-1)[p]+Li/Li—1)/Li/ Li—1 we deduce by application of the corollary
for n = 1 that deg(G[p] + L;)/L; > €. Since the map (G[p] + L;)/L; — (G[p] + L)/ Ly, is
an isomorphism over K, the corollary follows. ]

We can deduce the following result on the dynamic of the Hecke correspondence C'.

Corollary 14.3.2. — Let [a,b] C|0,1[. There ezists r(a,b) > 0 such that for all € € [a, D]
we have ty2(t1 1 (Xkii(p)e)) € Xiti(P)etr(ap)-

Proof. See [62], prop. 2.3.6. For the reader’s convenience, let us mention that this is an
application of lemma 14.3.1, point 5., together with the maximal principle applied over
suitable quasi-compact subsets of Cf. O

14.4. Cohomological correspondences in the analytic setting. —

14.4.1. Basic vanishing. — In this section we establish a vanishing result for coherent
cohomology with respect to the change of polyhedral cone decomposition and also a van-
ishing result for higher direct images of the correspondence. These results will allow us to
consider safely the action of Hecke operators on cohomology.

Proposition 14.4.1.1. — 1. Let X and Y be smooth polyhedral cone decom-

positions.  Consider the map 7svy : Xgu(p)sy — Xku(p)z. We have

R(WZ’,E)*ﬁXKu(P)z/ = Oxy(p)s @nd R<7TZ/’E)*6D;(_:M(P)2/ - ﬁ;(_:u@)z'

2. Let tpn : Cn — Xpgii(p). Then we have R(tn1)«0c, = (tn1)x0c, and
R(tn1)+ 08" = (tn1)+ O

Proof. The points 1 and 2 for the structural sheaves (not the ++ version) follow from
standard computations and the comparison theorem stated in [69], thm. 9.1. We now
proceed to deduce 1 and 2 for the “++" sheaves. Let ¢ C X be a cone. Then, o NY/ is
a refinement of 0. Associated to o is a boundary component Z, — Xk;(p)s. Its inverse
image in Xk;(p)sy is a union of boundary stratum Z,qyy.

We have local charts

™
Mo‘ﬂE/ E—— Mo

]

ZO—OE/ —— ZO'

and there is an isomorphism :
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ZUQZ/ iy /\ZO'
onX/ — > .Mo'
o — Zo‘ﬁzl ﬂ-Z/,E o — ZU
Xri(p)sy —— Xrui(p)s

There is a Kuga-Sato variety B, a split torus 7" and a natural map M, — B such that
Myay = M, is locally isomorphic over B to Tsv x B — T, x B. By proposition 3.4.1, we
o
deduce that Rﬂ*ﬁMmE = ﬁMg'
By proposition 3.3.1, this implies that Rmﬁzgz /p" = ﬁgj /p™. This implies in turn
that

) s
R(WECZ) ﬁXKl P)E/p XKZ'L( )z//pn'
We have a long exact sequence :
= R 2l Or oy RO O3L )y, = B2 O L ), /P = -
o . ++ -
We look at the sequence for i = 0. Since (7yy) ﬁXm /p = XKZ (P)s /p
and ﬁ’++l s (W2/72)*ﬁ;;i(p)z/, we deduce that the map (Wz/,z)*ﬁ;;“(p)z,

(s 32 )% ﬁ;;_(p - /p is surjective.
This implies that for all ¢ > 0, multiplication by p is an isomorphism on

Ri(ﬁzf,z)*ﬁ;;i(p)y. As a result, Ri(ﬂzl72)*ﬁ;;i(p)z/ = Ri(T:LEJ:Z)*ﬁXK“(p)E,. The

- - ++ _

latter vanishes. We also deduce easily that (7 5).0y D = O ()
We next deal with point 2. We have C,, = C, sy and Xgyi(p) = Xkii(p)s for two
smooth polyhedral decompositions ¥ and ¥/ (for different integral structures). Actually
we can use X to produce a toroidal compactification Cj, 5; which is not going to be smooth

(because of the change of integral structure). We then have a factorization of ¢, into

Ch.sy EN Chx EN Xkii(p)y. As in point 1, we show that Rf*ﬁJFJr = ﬁ++2 (notice that

the smoothness of ¥ was not used in the proof of 1). On the other hand, the morphism g
is finite and has no higher cohomology. O

14.4.2. Cohomological correspondences for classical sheaves. — Let .# be any of Q*:7)
or Q¥ (—D). We can define an unnormalized analytic cohomological correspondence
(tn1)sty2# — F by taking (for instance) the analytification of the algebraic cohomo-

logical correspondence. We normalize this map by dividing by the factor p"317) and call
it U™. This normalization is consistent with section 10.4. Restricting this map to .Z# T
provides amap U™ : (tn,1)«t} o F T+ — p~3* F++. The reason the map lands in p=3".Z++
instead of p~3"~"".Z T+ is that the kernel L,, of the isogeny G — G,, has degree at least
one by lemma 14.3.1, 2.

Remark 14.4.2.1. — When we work on the analytic space, we cannot expect the co-
homological correspondence to have a better integral property than the integral property
stated above. The cohomological correspondence has a better integral property on the
formal scheme ordinary locus (see sect. 10.4).

We denote by U™ : RT'(Xky;(p), #) — RT(Xkui(p), F) and U™ : RT(Xkyi(p), F 1) —
RI (X (p),p 2" #+F) the corresponding maps on cohomology. Obviously, U" is the
n-th iterate of U = U'.
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14.5. Analytic continuation. — Let ¢ and ¢ be such that tn,2t;,11(XKli(p)e') C
Xkii(p)e. Then we get a map :
Ul : RU(Xk1i(p)e, F) — RU(Xk1i(p)er, F ).

e€ -
On the other hand, if ¢ > ¢, we have a restriction map
resee : RU(Xkii(p)e, #) — R (Xk1i(p)ers F)

induced by the inclusions Xgi(p)e — Xkii(p)e. When it makes sense, we have U, o
reser e = Ul o and resg o o U, = U”,,. We often write U™ instead of U, and res
instead of resc  if the context is clear.

Proposition 14.5.1. — Let f € H(Xk;(p)e, F) with e < 1. We assume that Uf = af
with a # 0. Then for all € > € > 0, there is a unique section g € H'(Xky(p)e, F) such
that Ug = ag and resye g = f

Proof. Let [¢,d] C]0,1[ such that €, € € [¢,d] and choose n such that nr(c,d) + € > € (see
coro 14.3.2). We consider the operator a="U" : H(Xky;(p)e, F) — H (Xk1i(p)er, F) and
we set g =a "U"f.

The following diagram commutes:

H'(Xkii(p)e, F) — H'(Xk1i(p)er, F ) — H' (Xk1i(p)er s F)

| i

Hi (X (p)e, F) — > H (Xgii (p)e, F) —L> Hi(Xiyi(p)er, F)

and we deduce that Ug = ag. Moreover, since we can factor a™"U" : HY(Xk1i(p)e, F) —
Hz(XKli (p)gl, ﬁ\) into

a—TLUTl

H' (Xgii(p)e, F) 5 H(Xgu(p)e, F) “ = H (Xkiu(p)er, F)

we deduce that g is unique.

We can slightly improve the last proposition, in the spirit of [38].

Proposition 14.5.2. — Let f € H{(Xky(p)e, F) withe < 1. Let P = X™+a,, 1 X™ 1+
-+ ag € O[X] be a polynomial of degree m with ag # 0. We assume that P(U)f = 0.
Then for all e > € > 0, there is a unique section g € H (X (p)er,-F) such that P(U)g = 0
and rese g = f.

Proof. Let Q = —ag (X" + apm_1 X" '+ +a1X). Then QU)f = f and g = QU)"f
for n large enough. O

Remark 14.5.1. — Using lemmas 14.1.1, 14.1.2, corollary 13.2.4.2 and the above propo-
sition we deduce that we can think of finite slope sections on H!(Xy;(p",€),.F) for any
e > 0 and n as sections of H'(Xgy;(p)e, #) for any € > 0 and similarly for cuspidal
cohomology.
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14.6. More analytic continuation. — We show that we can improve the last proposi-
tion if we work with torsion coefficients. Let j : Xk (p)e < Xk (p) be the open inclusion.
For any sheaf ¢ over X;(p) we will abusively write in this paragraph ¢/ x,.,, (). for j«j*¥
in order to simplify the notations.

Proposition 14.6.1. — Let 0 < € < €. There is a map o fitting in the following
commutative diagram of normalized cohomological correspondences :

n
€,€

(tn, 1) (tn2) (F i) ) — F [pnCrk=3=2¢04+0) ZH4 |4 .

| e

(tn)u(tn2)*(FHH) vt y/pn(2r+k73726’(r+k))y++
Before giving the proof we need the following lemma.

Lemma 14.6.1. — Let x : Spa(K,Ok) — Cy, be a point. Assume that |01, |+ < [p*" ..
The map QJ(E/Ln|x — QJG“,|x factorizes through p”_O‘QJGr|x. The map

Sym*Qf ;@ det’ Q) [ — Sym* QY ® det" Q.

factorizes through pk(”_o‘)”(?’”_o‘)Sykag ® detrﬂax.

Proof. We fix an isomorphism between QE/L,JI — QJ(E|I and (9%( M (’)%( with M a

diagonal matrix with coefficients my, my. We have |mimal, < |p*"~%|,. But on the other
hand, |m|, > |p*"|, since L,, C G[p?"]. We deduce that |m;|, < [p"%,. O

Proof.[Proof of proposition 14.6.1] Let x € Xgy;(p). We have to find a neighborhood U
of z in Xky;(p) and to construct a canonical map :

t;,2y++‘/¥}{li(p)e (t;,ll U) — g/pn(2r+k73f2e (r+k))g‘++(U).

Pick €’ €]e, €[ such that for all y = (G, H, L,,) € t;ll(x) we have [0z, |, # [p"G~2")],.
This is possible since the fiber of ¢, 1 is finite away from the boundary. At the boundary,
it is easy to see that there are only finitely many possibilities for [dz,,],.

It follows that there exists a neighborhood U of x and a disjoint decomposition of
t 1 (U) = VIIW where for all (G, H,Ly,) € W, we have |5z, > [p"®2¢)| and for all
(G,H, Ly,) € V, we have |p, | < |[p"3=2")].

We have a map U" : t ,.# (V) @t} o.7 71 (W) — F(U). The image of ty ,.Z (V)
in .7 (U) lands in p?(2rtk=3-2¢"(r+k)) ++(17) by the above lemma 14.6.1. We deduce a
factorization

U™ (tn)uth o F THU) = £, FTH(W) = F(U) prCrh=372000) 24 (),

Moreover t,, 2(W) C Xkyi(p)e by corollary 14.3.1, so that t}, .7 T+ (W) =t 5.7 | 1, (). (W).
We can construct the expected map as the composition :

t2,2§++’é\fkli(p)é (t;,ll U) N t;729++(W) N y/pn(QT-i-k—?)—?e (r—i—k))y-ﬁ-—k(U)_

It clearly does not depend on the choice of €”. O

Corollary 14.6.1. — Let ¢ > 0. Let f € H(Xky;(p)e, F) be a form satisfying Uf = af.
Assume v(a) < 2r + k — 3. There is a projective system

(fn) € lim H' (Xgu(p), F [p"FtT)
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which satisfies U(f,) = a(fn) and such that reso(fn) is the image of f in
lim B (Xi(p)e, & /p" F+7).

Remark 14.6.1. — The U operator induces maps
H' (Xkii(p), F [p"F ) = B (Xku(p), F [p" > F ).
It follows that it acts on lim,, H!(Xk;(p), F /p"F ).

Proof. Let € > 0 be such that « = 2r+k —3—2€¢ (r+k) —v(a) > 0. We can assume that
0 < e < € and that f € H(Xgi(p)e, .-F) satisfies U f = af by proposition 14.5.1. The map
Xkii(p)e = Xkii(p) is affine (there is a covering of X'xy;(p) by affinoids, such that the fiber
over these affinoids is affinoid). It follows that H(Xfy;(p)e, F) = H (Xk1i(p), F |21 p)e)-

After rescaling f we may assume that f comes from a section (still denoted f)
in H'(Xg15(p), - F T arnp).) and that Uf € H'(Xgu(p), p > F T | xpp).) is the im-
age of af in H'(Xk(p), p > F | xm).). We define the sections f, = a Ul f €
H' (X (p), F [p"*F 7).

Consider the following commutative diagram :

a Uz,

H (X (0), 7 (o)) ’ Hi(Xi(p), F [pe.F++)

—n— 1Un 1

Hi(XKli(p)e’p_S_U(a)ﬁ++|XKzi(P)e) = Hi(XKli(p)a ﬁ/p(n_l)a_3_v(a)y++)

T a—n—lUn—l T

H (Xk1i(0), F 1 | s ).) 0 HY (Xii(p), F [pm— Doz +7)

where the vertical maps going from the bottom to the middle line are the obvious ones.
Since the image of f € H'(Xgii(p),-F " |xp(p).) is the same via any of the two left
vertical maps, we deduce that f, = f,_1 in H(Xgyi(p), Z /pn—De=3-v(a) Z++) Consider
the following commutative diagram :

XKlz ﬂ/pna 5\++

% \

Klz XKZ’L y/pna739++>

XK“( ) 3ﬁ++|XKlz )

H' (Xki(p), F 1|

It follows that Uf, = af, in H(Xky;(p), F/p"*3.FT+). As a conclusion, we obtain a
projective system

(fn) € lim H (s (p), F /p" > O F ) = lm H (X (p), F /p" F )
which satisfies U(f,) = a(fn). By construction, resg.(fn) is the image of f in

lim, H( Xk (p)e, F /p"F ).
O

We can again slightly improve the above corollary :
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Corollary 14.6.2. — Let f € H{(Xg(p)e, F). Let P= X" 4+ a, 1 X™ 1+ 4ag €
O[X] be a polynomial of degree m. We assume that P(U)f = 0 and that for all the roots
a of P in C, we have v(a) < 2r + k — 3. There is a projective system

(fn) € lim H (Xgi(p), F [p"F )
which satisfies P(U)(fn) = 0 and such that reso(fn) is the image of f in
lim H' (X (p)e, F /p" F ).

Proof. We let Q = —ag (X™ + a1 X™ ' + -+ + X). Then Q(U)f = f and we let
fn=Q(U)™f as in the proof of corollary 14.6.1. O

14.7. Classicity of overconvergent cohomology. — We are now ready to state our
main result on the classicity of small slope cohomology classes.

Lemma 14.7.1. — For any finite slope h € Q, the map HY(Xgpi(p)e, )= —
lim,, H (Xki(p)e, F /p"F 1) is injective.

Proof. Denote by V the image of H!(Xgi(p)e, FT) in HY(Xkp(p)e, #). We have to
prove that H* (X (p)e,.-Z )" NV is bounded. Let I be a finite set and U = {U;};c; and
U = {U]}icr be two finite affinoid coverings of Xg;(p). We assume that i’ C U;. Such a
covering exists because Xfy;(p) is proper. Let U, = {U; ¢} be the finite affinoid covering
U N Xkpi(p)e. Let € < € be such that U(Xkii(p)e) C Xkii(p)e. Let Uy = {U; ¢} be the
covering U' N X ;(p)er. For all i € I, we have U; ¢ C U; . The U operator is defined as the
composite

res

U
RI(Xkii(p)e, F) — RI(Xkii(p)er, F) = RI(Xkii(p)e, F).

We can represent RI'(Xkii(p)e, #) by the Cech complex M*® = Cech(U,,.F) and
RI(Xkii(p)e, F) by N® = Cech(Uy,.#). The map U can be represented by

e Tres

U
U:M*= N* =" M*

which is compact. We have a direct summand (M*)=" which is a complex of finite
dimensional vector spaces and H!(Xgi(p)e, . F)S" = HY((M*)Sh). Since the natural
map Hj, (Xkii(p)e, F 1) — H(Xkui(p)e, # ) has cokernel of bounded torsion by lemma
3.2.2, we can replace V by V' the image of H}, (Xki(p)e, Z 1) in H'(Xkyi(p)e, F). Let
Zi((M*)=h) € M be the cocycles of slope less than h. This is a finite dimensional vector
space. We denote by M** the Cech complex Cech(U,,.#+). Then M*" is bounded in
M. Tt follows that M*" N Z((M*)=") is bounded and thus a lattice. As a result, its

image in H' (X (p)e, - F)=" (which is H (Xgi(p)e, #)=" N V') is bounded. O
Theorem 14.7.1. — For any € € [0,1[NQ, the restriction map
H' (Xgeyi (p), QU))<KT2r=8 — HI (X (p), QUor)) <h2r =3

is bijective. A similar statement holds for cuspidal cohomology

Proof. Denote by res the map of the corollary. We first exhibit a map ext :
H (X (p)e, QM) <k+2r=3 s Hi(Xpps(p), QR <k+27=3 in the other direction. Given
f € H{(Xkui(p)e, Q) <k+2r=3 " we obtain (f,) € lim, H (Xxy(p), Q%) /pr(QF))+) by
corollary 14.6.2. Since

lim H' (X3 (p), Q57 /p (QED)T) = H (X(p), QF)
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by proposition 3.2.1, this defines the map ext. Using lemma 14.7.1, we deduce that
res o ext = id. Unravelling the construction of ext, we deduce that ext o res = id. O

Corollary 14.7.1. — 1. The map
Hi(XKli(p)a Q(k,r))<min{k+2r—3,k—2} N HZ(.‘.’ k, r)<min{k+2r—3,k—2}
is an isomorphism. A similar statement holds for cuspidal cohomology.

2. The map
HO (X (p), Q(k,r))<min{k+2r—3,k+1} — HO(1, &, r)<min{kz+2r—3,k¢+1}

s an 1somorphism and a similar statement holds for cuspidal cohomology.
3. The map
H' (X (p), QUor)y<min{ht2r=3k+1} _ 14 p gy <min{kt2r=3,k+1}

is injective and a similar statement holds for cuspidal cohomology.

Proof. This is a combination of theorem 14.7.1 and corollary 13.3.3.1 (see also remark
14.5.1). O

14.8. Application to ordinary cohomology. — We are now able to deduce a classic-
ity theorem for ordinary classes in ordinary cohomology. We recall that f is the ordinary
projector attached to U.

Theorem 14.8.1. — The map
FRT (Xgi(p), Q%) (=D)) ©F, Qp — fRT(X53,(p), @™ (=D)) ©F, Qp
is an isomorphism for all k > 0.

The proof of this theorem will be split into several lemmas. We denote by X [%llz(p)
the adic space over Spa(C, Q) attached to %%Z(p) By definition X[%llz(p) = Xk1i(p)1, but
we prefer to use the notation Xl%lll(p) for this space.

Lemma 14.8.1. — We have quasi-isomorphisms :
1. fRE(Xgu(p), Q*2(=D)) ©f C = fRI(Xii(p), 2" (~D)),
2. fRI(X5,(p), Q%2 (=D)) ®f C = fRI(Xg;,(p), 2% (-D)).
Proof. The first point follows from the GAGA theorem stated in [69], thm. 9.1. The

second point follows classically from the fact that X I%llz (p) is the adic space over Spa(C, O)
attached to i{]z{}z (p). O

Remark 14.8.1. — The C-vector space HZ(?('I%IIZ (p), Q*2)(—D)) admits a 0-slope decom-
position in the sense of section 13;1.1 : in(X[%lli(p), Q(k’Q)(—lD)) = Hi(/l’[%lli(p), Qk2)(—D))=0
is the slope 0 part and (1 — f)H/(XZ ) (p), Q%2 (=D)) = H (X7, (p), Q52 (—=D))>? is the
slope strictly greater than O part.

To prove the theorem, it suffices to show that the restriction map
JRE(Xgii(p)e, 22 (=D)) — fRI(X gy, (p), 242 (— D))
is a quasi-isomorphism for & > 0 and any ¢ € [0, 1[, by theorem 14.7.1.
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Lemma 14.8.2. — For any k > 0, and any € €]0,1]NQ, the cohomology complexes
fRI(Xi(p)e, Q82 (—D)) and fRI( Kh( ), Q%2 (—D)) are concentrated in degree 0 and
1. Moreover, the map fH (Xg(p)e, Q%2 (=D)) — fHY( Kh(p) QF2)(—D)) is injective
if t = 0 and surjective if i = 1.

Proof. We prove that these cohomology complexes are concentrated in degree 0 and 1
by exhibiting a special covering computing the cohomology that will be useful to establish
the other claims of the lemma (4. Let us denote by X* — Spec Zy, the minimal com-
pactification of the Siegel threefold with spherical level at p, and by X, (p) the minimal
compactification with Klingen level at p. We denote by X* and X7, (p) the associated
formal schemes. The p-rank at least one locus ¥*2! < X* is covered by two affines :
sufficiently high powers Ha(G)*®*1) and Ha'(G)" of the first and second Hasse invariant
(defined respectively on V(p) and V(p,Ha(G))) lift (non-canonically) to sections s; and
s9 of the ample sheaf (det wg)"(pzfl) over X*, and their non-zero locus is X*=!. Therefore
Xx*21 = D(s1) U D(s3) is covered by two affines.

The map X%, (p) X x+ X2t — %21 is proper and quasi-finite, therefore it is affine.
We deduce that X%, (p) xx+ X*=1 is also covered by two affines. Over the toroidal com-
pactification Xy;(p) we have the canonical chain of isogenies G — G’ — G. The non-zero
locus of the map on differentials det wg — det w¢y is by definition X%Z (p) = Xkui(p). The
map detwg — detwgs descends to a map of invertible sheaves over X%, (p) and its non-
zero locus defines the open formal subscheme .’{;(lzzl(p) — X%, (p), whose inverse image in
Xxu(p) is Z{IZ(ZZ( ). The map Z{}Zl( ) = X% (p) is affine, and moreover it factors through
X%0:(p) Xxx X921 — X%, (p). We deduce that %;{%1(]9) is covered by two affines, say U
and Yo. Let X%, (p) be the analytic adic space over Spa(C, O) attached to X%, (p), let Vi
and V5 denote the inverse images of Uy and Uy in X}, (p) and set Xl*(f Y(p) = ViU Va. Let
T Xiui(p) — Xjs(p) be the projection. Then Rm, Q%2 (~D) = 7,Q"2)(—D) (by [50],
thm. 8.9). Moreover, the image by 7 of X%lz(p) is Xl*(’l%l(p). Let U; = 71V, for i € {1,2}.
We deduce that RI'( Klz( ), B2 (—D)) is represented by the complex :

H (U3, 242) (D)) @ H' (U, 22 (~ D)) — H(U; 1 Uy, 242 (- D))

and thus that fRI( Kh(p) Q®:2)(—D)) is concentrated in degree 0 and 1. This complex
contains a subcomplex of overconvergent sections :

HO(Uy, Q%21 (—D)) @ HO(Uy, Q-2 (— D)) — HO (U, N Uy, Q*2:F(—D)).

whose i-th cohomology group computes colime<iH!(Xxyi(p)e, Q%2 (—D)). Since
FHY(Xi(p)e, QB2 (=D)) = fH (Xgys(p)er, QB2 (—D)) for any €, € €]0,1[NQ by propo-
sition 14.5.2, we deduce that fRI'(Xg;(p)e, Q%2 (=D)) is concentrated in degree 0 and
1.

It is clear that restriction induces an injection colim¢.iH®(Xk;(p)e, Q(kﬁz)(—D)) —
HO(X7,(p), 242 (=D)).

The cohomology group H (XZ) (D), Q#:2)(—D)) carries the natural quotient topology
from the surjection HO(U; Uy, Q#2)(~D)) — Hl(/'\f}%lli(p), Q*2)(—=D)) #5) and we deduce

24. That these cohomologies are concentrated in degree 0 and 1 has already been established by slightly
different methods, see theorem 11.3.1, point 2 and proposition 12.9.1.

25. We can describe the topology on the C-vector space H' (X7, (p), 2% (~D)) in a more intrinsic
way as follows : an open and bounded submodule is given by the image of

Hi(xKlz( ) ot 2)( )®Zpo)’
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that the map colim, s H' (X (p)e, Q%2 (=D)) — Hl(XI%lli(p), Q*:2)(—D)) has dense im-
age. If we apply the ordinary projector on both sides (the ordinary projector is compatible
because 0-slope decomposition is functorial), we get a surjection since the ordinary part
is finite dimensional. O

Let us denote by
di(k) = dime fFH (XZL(p), Q*2) (=D))
and by .
d! (k) = dime fH'(Xki(p)e, Q52 (~D))
for any € € [0,1[NQ.

Lemma 14.8.83. — For all k > 0, we have do(k) > d}j(k) and di(k) > dy (k). If k is large
enough, we have d;(k) = dj(k)

Proof. We have do(k) > d o(k) and dT( k) > dl( ) by lemma 14.8.2. Moreover, if k is large
enough, we have an isomorphism eH°(X, Q2 (—D)) — fHO( Kh(p) Q. 2)( D)) and
an injection eH'(X, Q2 (—D)) — fHY( Kh( ), Q82 (—D)) (by theorem 11.3.1). The
lemma follows from the claim that the maps : eH* (X, Q52 (—D)) — fH (X (p), Q%2 (D))
are isomorphisms for i € {0, 1}. The Hecke parameters («, 3,7, d) of an irreducible smooth
admissible representation 7, of GSp,(Q,) contributing to either eH!(X,Q*2)(~D)) or
FHY(Xg1i(p), Q%2 (—D)) have p-adic valuations (in a suitable order) 0,0,k + 1,k + 1 by
corollary 14.9.1. The claim follows from proposition 5.1.5.2 and lemma 5.1.5.2. 0

Lemma 14.8.4. — For all k > 0, we have d;(k) = dI(k)

Proof. Let us denote by di’/(k) dime H,,, (1, k,2). We have d(T)’/(/f) = dé(k’) for all k >
0, and d} (k) > di (k) for all k > 0, with equality if k > 3 by corollary 13.3.3.1. The Euler
characteristics d; (k) — do(k) and di’,(k) - dg’/(k) are locally constant functions of k € Z>¢
by theorem 11.3.1 and proposition 13.4.1. We deduce that d; (k) —do(k) = dJ{’,(k) — dg’,(k)

for all k > 0 by lemma 14.8.3. It follows that for all k > 0, dy (k) —d}" (k) = do(k) — di}' (k),
but since the first difference is non-positive and the second difference is non-negative by
lemma 14.8.3, we deduce that d" (k) = di(k) for all k > 0. Since djj (k) = djj(k) and
d]i”(k) > dJ{(k) > dy (k) for all k > 0, the lemma and the theorem are proven. O

14.9. Estimates on Satake parameters. — We have Hecke operators T, and
Ukii(p) 2 acting on H(X, Q%2 (-D)) ®7, Q, and H'(Xy(p), Q% (-D)) ®z, Q,. The
goal of this section is to establish the following result :

Proposition 14.9.1. — For all k > 0, the Hecke operators Ty 2 and Ugkyi(p) 2 acting on
H (X, Q*2) (D)) ®z, C and H (X ki (p), Qk2)(~D)) ®z, C respectively only have eigen-
values of positive p-adic valuation.

We deduce the following corollary :

Corollary 14.9.1. — Assume that k > 1. The Hecke parameters (a,f,7,0) of an
irreducible smooth admissible representation m, of GSpy(Qp) contributing to either
eH (X, QF2)(=D)) @ C or fH{(Xgi(p), Q%2 (=D)) ® C have p-adic valuations (in a
suitable order) (0,0,k + 1,k +1).

endowed with the p-adic topology. Be careful that this last space is complete for the p-adic topology, but
not necessarily separated.
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Proof. This is an elementary Newton polygon computation in the spherical case and
obvious in the Klingen case (in which case the corollary holds for k£ > 0). O

Over X;(p), we consider the chain G — G’ — G. We have the differential det wg —
det we of the second isogeny and we denote by Z = det wg ® det w(_;,l This is an invertible
sheaf of ideals in O, (). It defines a Cartier divisor supported in the special fiber of

Xkii(p), whose complement in the special fiber is X%ll (p)1. We denote as usual X=! the
open of p-rank at least one of the formal completion of X. We also let (X (p))=t be
the open of p-rank at least one of the formal completion of Xg;;(p) (it contains strictly
%IZ(Z (p) which is the locus where the universal rank p group scheme is multiplicative). Our
key lemma is:

Lemma 14.9.1. — The Hecke operator Tpo acts on RT'(X21, Q"2 (D)) and the Hecke
operator Ugi(y) 2 acts on RD((Xg(p))=*, Q2 (—D) @ T73).

Remark 14.9.1. — Using the techniques developed in section 4, we could easily con-
struct an action of T), 2 on RT'(X, Q2 (—D)).

Remark 14.9.2. — The sheaf Q(*2) (—D)®Z~3 is an integral structure on Q*2) (-D)®z,
®Q,. The reason for which we need to modify the obvious integral structure Q2 (—D)
will become clear during the proof.

14.9.1. proof of proposition 14.9.1 assuming lemma 14.9.1. — We will only give a full
proof of the proposition for classes at Klingen level. The spherical case is identical. We
start by the following lemma:

Lemma 14.9.2. — For anyn € Z>o U {oc} %) the maps
H'(X, Q"2 (=D)/p") — H (&=, Q"2 (-D) /p")
and
H' (X ki(p), Q%2 (=D) @ T2 /p™) — H (X kus(p))>", QB (=D) @ T3 /p")
are isomorphisms for i = 0 and injective for i = 1.
Proof. This follows from [SGA], exposé III, section 3. The point is that X and Xx;(p)

are Cohen-Macaulay and X! and (X (p))=! are opens of codimension 2. O

Let i € {0,1}. Let f € H(Xgyu(p), Q® 2)( D)) ® C be an eigenclass. We assume
that Ugyipyof = af with v(a) < 0, so that a~ UKlz )2f = f. We want to deduce that
f =0. We have a commutative diagram where the horlzontal maps are injective :

H'(Xgui(p), @52 (=D)) @ C H'((Xku(p)=!, Q"2 (-D)) & C

T T

H (X i (p), Q%2 (=D) @ T73) @ O — H((Xx1i(p))=1, QFD(=D) @ IT3) @ O

After rescaling f, we may assume that f comes from a class g € H (X g (p), Q%2 (—D) @

~3) ® O. Moreover, the image ¢’ of g in H ((Xx(p))=", Q*2)(—=D) ® T73) @ O satisfies
o WUk 29 = 9 +h where h € H'(Xgu(p))=", QF2)(—D)®Z3)® O is a torsion class.
Rescaling g further, we may assume that A = 0. For any n > 0, there exists n’ such that
p" € @~ O and we deduce that ¢’ = « “"Ukiitp), ,g is zero in HY((Xxy;(p)) =L, Q%Y (-D)®

26. With the convention that p> = 0.
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T3 /p")®0O, and therefore g maps to zero in H (X gy (p), Q%2 (=D)@Z 3 /p")® . Since
lim,, H (X g5(p), Q52 (=D)@Z73 /p™) = H (X k1 (p), Q%2 (—=D)®Z~3), we conclude that
g =0 and that f = 0.

14.9.2. proof of lemma 14.9.1. — We can define a Hecke correspondences attached to the
double coset T}, 2 (see [18], p. 253) for suitable choices of polyhedral cone decompositions
3, ¥ and ¥

p,2 EII

N

It will convenient for us to take ¥ = X”. We drop the subscript corresponding to
the choices of polyhedral cone decompositions. Recall that C), 2 parametrizes isogenies
piG — p3G whose kernel is (away from the boundary) an isotropic rank p? subgroup of
PiGlpl.

Denote by €,2 the formal completion of Cp2 and by (€,2)=! its restriction to the
p-rank at least one locus. The map p; : (€,2)=' — X=! is finite, generically étale.
Therefore, we have a trace morphism Try, : (p1).0(¢, ,)>1 — Ox>1 (since Xx=1 is smooth,

hence normal). We also have a morphism pgg(kﬁ) — p{Q(k’Q) coming from the differential
of the isogeny. Using these, we get a map T}, , 2 (p1)x Q%2 (= D) — Q*2)(—D) and we let
Tpo =D~ T’ . We claim that T, : (pl)*pQQ(k 2(=D) — p*QE2(—D) so that the map
Tp,2 is well- deﬁned It is enough to check the claim over the ordinary locus by normality.
Over the formal neighborhood of an ordinary point € X=!, the correspondence (€, 2)="
splits into several components : the locus where the isogeny pjG — p3G has multiplicative
kernel, has kernel an extension of an étale by a multiplicative group, and has kernel an
étale group. In the first case, the map pgﬁ(kﬂ) — p{Q(k’Q) factors through pk+4p{Q(k72),
in the second case it factors through prTQ(k’Q) and in the last case it is an isomorphism.
On the other hand, the restriction of the trace map Try, is an isomorphism in the first
case, factors through p@ys1 in the second case, and through p3@y>1 in the last case
(computations using Serre-Tate). The lemma is thus proven over ¥~

We now consider the situation over (Xg;(p))=t. Our first task is to produce a model
for the correspondence attached to Upyy(p),o- We first consider (Dp2)=1 = (€2)2 Xx21,
(Xk1:(p))=! and we denote by (D,2)>! the associated analytic space over Spa(Qp,Zp).
This is not quiet the correspondence corresponding to Uiy 2 : We need to select certain
irreducible components. Over (:ng)zl, we have an isogeny p7G — p5G has well as the
universal chain G — (G')! — G’ — G (where the first map has degree p, the second p?,
the third p and the total map is multiplication by p). We let H = Ker(G — (G')"). We let
(£p2)=! be the union of components of (D, 2)=! where the kernel of the universal isogeny
piG — p5G has generically (that is away from the boundary) a trivial intersection with
the universal subgroup H. We let (€,2)2! — (D,2)=! be the normalization of the closure
of (€2)2! in (Dp2)=t. The map py : (€,2)! — X! lifts on the generic fiber to a map
(Ep2)=t — (Xkui(p ))71 (we equip p3G with the image of H via pjG — p3G), and thus by
normality it extends to a map of formal schemes ps : (€,2)=! — (Xxu(p))='. We have
thus produced a model for the correspondence.

We have a trace morphism Trp, : (p1)xO(e, )21 = O(x,,(p))>1 (because py is(kﬁr;ite,
1 2)

generically finite étale and (X xy;(p))=" is normal). We have also have morphism p5Q

prQk2),
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Lemma 14.9.2.1. — There is a natural morphism p5sZ—! — pyZ- 1.

Proof. The isogeny induces a generic isomorphism p7H — p5H and by Cartier duality a
map : psHP — pfHP. We thus have a map pi@yp — p50pp of finite flat, generically
étale O, ,-algebras (27) . We deduce that there is a map

psDo. /0 = piDo, /0

(X ()21 (X ()21
between the inverse different of both algebras. By [20], section 1.3, 1.4 and definition 3,
the tensor product

DﬁHD/ﬁ(XKH(p))Zl ©oyp.e ﬁ(xmi(P))Zl

for the unit section e : Oyp — Oz, . (p))>1 18 canonically isomorphic to 7% O]

Remark 14.9.3. — If we take an ordinary point = € (E‘Ep,g)zl, there are three possibilities
for the map pjH — p5H at z :

1. pTH and p5H are multiplicative groups and the map is an isomorphism. In that
case, the map p5Z—! — p;Z~! is an isomorphism at .

2. pjH and p3H are étale groups and the map is an isomorphism. In that case, the
map psZ~! — p5Z~! is an isomorphism at x.

3. p{H is an étale group and p3H is a multiplicative group, and the map is zero at
the point z. In that case, the map psZ—! — piZ~! factors through ppiZ—! over
the local ring at x (see [20], prop. 2 on page 11).

All together, we can use this to produce a map U}m(p) g ° (p1)sp5QE2 (D) RT3 —

Q*2)(—D) ® T73. We claim that this map factors through p>Q*?2)(—D) ® Z73. We take
an ordinary point x € (X Kli(p))zl and work in the formal neighborhood of this point. We
first consider the case where H is a multiplicative group at x. The correspondence splits
into several components over the formal neighborhood of = : the locus where the isogeny
pjG — p5G has kernel an extension of an étale by a multiplicative group which intersects
trivially with H, and the locus where it has kernel an étale group. In the first case, the map
pgﬁ(k’z) — p{Q(k’z) factors through prTQ(k’Q) and in the last case it is an isomorphism.
On the other hand, the restriction of the trace map Tr,, factors through p@y>: in the
first case, and through p?@y>1 in the second case. Finally, the map p5Z—! — p{Z~! is an
isomorphism. We now consider the case where H is étale. The correspondence splits into
several components over x again :

1. the locus where the isogeny pjG — p3G has a multiplicative kernel,

2. the locus where the isogeny piG — p5G has kernel an extension of an étale by a
multiplicative group which intersects trivially (at z) with H,

3. the locus where the isogeny piG — p5G has kernel an extension of an étale by a
multiplicative group which intersects non-trivially (at =) with H, so that p5H is
multiplicative on this component,

4. the locus where piG — p5G, has kernel an étale group, so that p5H is again
multiplicative on this component.

We now list the divisibility we get in each of these cases :

1. In the first case, the map ng(k’Q) — p‘{Q(’“Q) factors through p4+kp{Q(k’2),

2. In the second case, the map p§Q(k’2) — p’l‘Q(k’Q) factors through p2p{Q(k’2)

the trace map Trp, factors through pOix, . (p))>1;

, and

27. By [75], lem. 2.4.3, the group H can be extended to a finite flat group scheme at the boundary.



106 Higher coherent cohomology and p-adic modular forms of singular weights

3. In the third case, the map pEQ(k’Q) — p’fQ(k’z) factors through prIQ(k’Q), and the
map psZ~! — piZ-! factors through ppiZ—1,

4. In the fourth case, the map psZ~! — piZ—! factors through pp1Z—1.
This finishes the proof of lemma 14.9.1.

PART IV
EULER CHARACTERISTIC

15. Vanishing of Euler characteristic

In this last section, we use automorphic methods to compute the Euler characteristic
of a non-Eisenstein localization of the complex of theorem 1.1 and prove theorem 1.2.

15.1. Action of the Hecke algebra. — We construct an action of the prime-to-p Hecke
algebra on the cohomology of our p-adic sheaves. This is a routine construction. Let ¢ be
a prime. We have introduced the spherical Hecke algebra H, = Z[Ty 0,7, ZOI,TM,TM] in
section 5.1.3. Let K =[], Ky C GSpy(Ay) be a compact open subgroup. We assume as

usual that K, = GSp4(Z,).

Proposition 15.1.1. — Let ¢ # p be a prime such that K; = GSpy(Z¢). We have an
action of Hy on RF(}ZKH(p)%l,S“ ® w?(=D)).

Proof. We suppress the subscript K from the notations in this proof. For certain choices
of polyhedral cone decompositions that we suppress from the notation, we can define Hecke
correspondences attached to the double coset T ; (see [18], p. 253) :

Cyi
N
X X
Denote by €;; the formal completion of Cy;. We can form the fiber product Dy; =

Cri Xp1.x %%}Z(p) The second projection py : ®y; — X can be lifted naturally to ps :

Dy — %12(%2 (p). Since the universal isogeny associated to the double coset T} ; is étale, we
have a canonical isomorphism :

Pos" ® wQ(—D) = pF e wz(—D).

The formal schemes f{%l (p) and Dy are smooth, and as a result there is a fundamental

class p{ﬁ’x%i(p) — pl ﬁx%i(p)

spondence T}, : p53* ® w?(—D) — piF* ® w?(—D). We shall set Tyo = (73T}, and
Ty = £75T}, for i = 0,129,

. We can thus form an unnormalized cohomological corre-

O

28. see remark 5.3.1 for a justification of this normalization.
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15.2. Euler characteristic. — Let K = [[, K; C GSpy(Ay) be a compact open sub-
group. We assume that K, = GSp,(Z,). Let N be the product of primes ¢ such that
K; # GSpy(Zs). Let p: Gg — GSp,(F,) be a Galois representation, unramified away
from the primes ¢ dividing pN. We assume that p is absolutely irreducible. We let m
be the associated maximal ideal of the abstract Hecke algebra H'P and Oy, : H'P — T,
the corresponding morphism. The map Oy, is thus defined by the rule ©4,(Qy(X)) =
det (1 — Xp(Foby)).

The algebra H™? acts on the perfect complex fRF(%[Z(}i(p)aS% ® w?(=D)). The A-
subalgebra of End(fRF(%[Zéi(P)a 3" ® w?(—D))) generated by H"? is a finite A-algebra.
In particular it is semi-local. We can define a direct factor (which may be trivial if p does
not occur in our cohomology) of fRF(%%Z- (p), " ® w?(—D)) associated to the maximal
ideal m (see [41], lemma 2.12) :

FRT(X73,(p), §° © (= D))m.
Theorem 15.2.1. — The Euler characteristic of the perfect complex
FRT(%73,(p), 8" @ w*(=D))m

1s equal to 0.

Remark 15.2.1. — We conjecture that the support over A of @%:Oin(%IZ{}i(p),g" ®
w?(—=D))m has Krull dimension less or equal to 1 if the representation p is not induced
from a real quadratic extension of Q (in that case, one should be able to construct positive
dimensional families using inductions of families of Hilbert modular forms). Compare with
conjecture 7.2 in [41].

The proof of this theorem will be given in section 15.2.5 below. Before giving the
proof we need to collect a certain number of results concerning automorphic forms.

15.2.1. Limits of discrete series. — Given A = (A1, \2;¢) € X*(T) + (2,1;0) € X*(T)¢
which satisfies —A; > Ay > —)\; and a Weyl chamber C' positive for A\ we have a (limit of)
discrete series w(A, C) (see [28], 3.3).

Let 3 be the center of the enveloping algebra U(g). By Harris-Chandra isomorphism,
3 ~ C[X,(T)]" where W is the Weyl group. The infinitesimal character of 7(\,C) is the
Weyl group orbit of A.

Si Ay # 0 and Ay # —A1, A determines uniquely C' and 7(\, C) is a discrete series.
The case of interest to us is Ao = 0 and 0 > A;. We now make these hypothesis. Under
these assumptions, there are two choices for C'. The natural choice (C' is the chamber
corresponding to our choice of positive roots) provides a limit of discrete series that we
denote by 7(\)" (it contains the holomorphic and anti-holomorphic limits of discrete series
of the derived group). The other choice of C' provides another limit of discrete series that
we denote by m(\)Y.

15.2.2. Cohomology of limits of discrete series. — For X = (A1, Ag;¢) with Ay = 0,0 > Ay,
consider the character (—A; + 1,2; —¢) € X*(T). This character is dominant for the Levi
Mg; ~ GLg x Gy, of the Siegel parabolic Ps; C GSp, which stabilizes the space (eq, e2).
Associated to this character is a complex irreducible representation of Pg; of highest weight
(=A1 + 1,2; —c) that we denote by Vi, 11,2.—¢)-

Recall that we have a map h : Resc/r — GSpy|r given by h(a + ib) = alz + bJ and
that Koo C GSpy(R) is the centralizer of the image of h. We let g be the complex Lie
algebra of GSp,. We have the Cartan decomposition g = €@ p. Since ¢ is also the complex
lie algebra of Mg;, the representation V(_y 119, can also be viewed as a representation
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of ¢ and K. Let W be a (g, Ko )-module. Then one can define the (p, K )-cohomology
of W, denoted by H®(p, Koo; W) (see [30], sect. 4.1.1).

Theorem 15.2.2.1 ([4], thm. 3.2.1, sect. 4.2). — 1. We have :
— H(p, Koi TV ® Vioasizg) = C if i = 0 and Hi(p, Ko7 (V)" ®
Vica+1,2—¢)) = 0 otherwise,
— Hi(p, Koo;m(A)Y ® V(—A1+1,2;—c)) = C ifi = 1 and H(p,Keo;7(\)I ®
Vica+1,2—¢)) = 0 otherwise.
2. There is a constant R such that if A\ > R and 7o in an irreducible, essentially
unitary representation of GSpy(R) and :
—if Ho(vaOOS Too @ V(—A1+172;—c)) # 0 then mog = 77(/\)h;
— if HY(p, Koo; Too @ Vica+1,2—¢) 7 0 then moo == m(A)9.
15.2.83. Representing cohomology classes by automorphic forms. — We let Sk be the
Siegel threefold of level K over C. We fix a toroidal compactification S, of Sk. Recall
that A = (A1,0;¢) € X*(T) + (2,1;0). We set k = —A; — 1. We also fix t’he. central char-
acter ¢ to be —A; + 3. This the “correct” normalization. We denote by ﬁl(Sﬁg”E, Qk:2))
the image of H(S}2%, Q) (—D)) in H' (5%, Q%) this is called the interior coherent
cohomology.

Theorem 15.2.3.1 ([30], coro. 5.3.2). — For every integer k > R — 1 (see thm.
15.2.2.1, 2.), we have

B (8125, 02) = @ (xff )"0
where m¢ runs over all irreducible admissible representations of GSpy(Ayf) such that
7 @ m(\)" is cuspidal automorphic and m"(7s) is the multiplicity of wp @ w(A)".
Similarly,
H'(Sies, Q0)) = @, ()70
where m¢ runs over all irreducible admissible representations of GSpy(Ayf) such that
@ m(N)9 is cuspidal automorphic and m9(wy) is the multiplicity of mp @ m(X)9.

We fix an isomorphism @p ~ C. Thanks to this isomorphism, we can make sense of
the localized cohomology groups Hi(SﬁgTE, QF2)(=D))g.

Corollary 15.2.3.1. — For k> R — 1, we have

HO(S1%, Q52 (= D)) = @ ()™ 1)
where Ty runs over all irreducible admissible representations of GSpy(Ay) such that mp ®
(NP is cuspidal automorphic and m"(ry) is the multiplicity of 7 @ T(A\)" and the char-
acter O, : HNP — C is congruent to Op,.

Similarly,

H' (835, Q"2 (= D)) = @ (wf )™ 70)
where Ty runs over all irreducible admissible representations of GSpy(Ay) such that 7y ®
m(A)9 is cuspidal automorphic and m9(my) is the multiplicity of mf @ w(X)? and the char-
acter @Wf : HNP — C is congruent to Oy,.

Proof. In order to deduce the corollary from theorem 15.2.3.1, we need to prove that
the natural map H' (S, QED(—D))p — H' (5%, Q*2)) is injective. We have a short
exact sequence :

HO(S72%, Q) — HO(S2%, ) @ op) — HY (5", 2 (-D)).
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We shall prove that the cohomology group HO(S%TZ, 0k2) o OD)wm is zero. Let S} be the
minimal compactification. Recall that there is a stratification

=Sk [[sWTI5%-
(1)

where S;.77 = Sg) HS}?) is a union of compactified modular curves. Let 7 : S5, —

S% be the projection. There is an induced projection D — Sg)’*. One computes that

Q"2 p = Wkt (—cusp) if k # 0 and w? when k = 0, where w**? is the usual sheaf of
modular forms of weight k + 2 on the modular curve.

Let ¢ be a prime that is prime to the level K. We let T;9 be the corresponding
Hecke operator. We let Ty be the usual Hecke operator on modular forms for the group
GL,/Q. On HO(Str, k2 @ gp) ~ HO(SW™, wh+2(—cusp)) (resp. ~ HO(SW™, w?) if

KX K K
k = 2), we have the formula Tyo = 2Ty by [22], IV, satz 4.4. Let f be an eigenform
in HO(SS)’*,wk—'—Q), with associated Galois representation pf : Gg — GL2(Q,). Then,
associated to the character ©; : HNP @p, we have the reducible 4-dimensional Galois

representation py @ py which is not congruent to p.
O

15.2.4. An application of Arthur’s results. — We use here Arthur’s classification for GSp,
as announced in [1].

Proposition 15.2.4.1. — Let 7y be an admissible irreducible representation of G(Ay)
which is unramified at primes £ not dividing Np. Let O, : HNP @p be the associated
character of the Hecke algebra. Assume that Or, is congruent to Ow. Let A = (A,0;¢) €
X*(T) + (2,1;0) with Ay > 0.

Then 7Tf®7r()\)h is automorphic if and only if mf@m(A)Y is automorphic and moreover,
m(my) =mI(my) = 1.

Proof. Assume that 77 ® m(\)" is automorphic (the argument would be the same if we
assumed that 7y ® m(A)¢ is automorphic). Let II be the associated global A-packet. We
claim that II is of generic type in the sense of [1], classification theorem on p. 78. Hence
II is stable and tempered. It follows that I, is an L-packet, and this is {m()\)?, 7(\)"}
(see [4], prop. 5.3.7). The conclusion follows. In order to see that II is of generic type,
we first observe that since 7(A)" is a limit of discrete series, II can either be of generic,
Yoshida or Saito-Kurokawa type (compare [68], sect. 1.1 and 1.2 with the description
of the parameters attached to w(\)* in [67], p.11). In the last two cases, the associated
Galois representation is reducible, while p is irreducible.

]

15.2.5. Proof of theorem 15.2.1. — In order to prove the theorem, we can spe-
cialize at a very large weight k. Then fRI(X%;(p),§" ® w*(—D))m ®@ax Q) =
R (X i (p), Q%2 (=D))y by theorem 11.3.1. The cohomology is concentrated in degree
0 and 1. Extending the scalars to @p we can express the cohomology in automorphic
terms using corollary 15.2.3.1 and proposition prop 15.2.4.1 :

FH (X ki (p), Q82 (=D))m @ Ty = @, (] W) = FH' (X pcts(p), 242 (-D))m @ Q,

where 7¢ runs over all irreducible admissible representations of GSp,(A¢) such that 7; ®

7(A\)" is cuspidal automorphic, the character O, = HNP 5 C is congruent to Oy. The

projector f acts on 71'5 lip),
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